Metamath Proof Explorer


Definition df-prjspn

Description: Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl . This space is considered n-dimensional because the vector space ( k freeLMod ( 0 ... n ) ) is (n+1)-dimensional and the PrjSp function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023)

Ref Expression
Assertion df-prjspn
|- PrjSpn = ( n e. NN0 , k e. DivRing |-> ( PrjSp ` ( k freeLMod ( 0 ... n ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprjspn
 |-  PrjSpn
1 vn
 |-  n
2 cn0
 |-  NN0
3 vk
 |-  k
4 cdr
 |-  DivRing
5 cprjsp
 |-  PrjSp
6 3 cv
 |-  k
7 cfrlm
 |-  freeLMod
8 cc0
 |-  0
9 cfz
 |-  ...
10 1 cv
 |-  n
11 8 10 9 co
 |-  ( 0 ... n )
12 6 11 7 co
 |-  ( k freeLMod ( 0 ... n ) )
13 12 5 cfv
 |-  ( PrjSp ` ( k freeLMod ( 0 ... n ) ) )
14 1 3 2 4 13 cmpo
 |-  ( n e. NN0 , k e. DivRing |-> ( PrjSp ` ( k freeLMod ( 0 ... n ) ) ) )
15 0 14 wceq
 |-  PrjSpn = ( n e. NN0 , k e. DivRing |-> ( PrjSp ` ( k freeLMod ( 0 ... n ) ) ) )