| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( n = N -> ( k freeLMod ( 0 ... n ) ) = ( k freeLMod ( 0 ... N ) ) ) | 
						
							| 3 | 2 | fveq2d |  |-  ( n = N -> ( PrjSp ` ( k freeLMod ( 0 ... n ) ) ) = ( PrjSp ` ( k freeLMod ( 0 ... N ) ) ) ) | 
						
							| 4 |  | fvoveq1 |  |-  ( k = K -> ( PrjSp ` ( k freeLMod ( 0 ... N ) ) ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) ) | 
						
							| 5 |  | df-prjspn |  |-  PrjSpn = ( n e. NN0 , k e. DivRing |-> ( PrjSp ` ( k freeLMod ( 0 ... n ) ) ) ) | 
						
							| 6 |  | fvex |  |-  ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) e. _V | 
						
							| 7 | 3 4 5 6 | ovmpo |  |-  ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) ) |