Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
2 |
1
|
oveq2d |
|- ( n = N -> ( k freeLMod ( 0 ... n ) ) = ( k freeLMod ( 0 ... N ) ) ) |
3 |
2
|
fveq2d |
|- ( n = N -> ( PrjSp ` ( k freeLMod ( 0 ... n ) ) ) = ( PrjSp ` ( k freeLMod ( 0 ... N ) ) ) ) |
4 |
|
fvoveq1 |
|- ( k = K -> ( PrjSp ` ( k freeLMod ( 0 ... N ) ) ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) ) |
5 |
|
df-prjspn |
|- PrjSpn = ( n e. NN0 , k e. DivRing |-> ( PrjSp ` ( k freeLMod ( 0 ... n ) ) ) ) |
6 |
|
fvex |
|- ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) e. _V |
7 |
3 4 5 6
|
ovmpo |
|- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) ) |