Metamath Proof Explorer


Theorem prjspnval

Description: Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023)

Ref Expression
Assertion prjspnval ( ( 𝑁 ∈ ℕ0𝐾 ∈ DivRing ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) )
2 1 oveq2d ( 𝑛 = 𝑁 → ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) = ( 𝑘 freeLMod ( 0 ... 𝑁 ) ) )
3 2 fveq2d ( 𝑛 = 𝑁 → ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑁 ) ) ) )
4 fvoveq1 ( 𝑘 = 𝐾 → ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑁 ) ) ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) )
5 df-prjspn ℙ𝕣𝕠𝕛n = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ DivRing ↦ ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) ) )
6 fvex ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∈ V
7 3 4 5 6 ovmpo ( ( 𝑁 ∈ ℕ0𝐾 ∈ DivRing ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) )