| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝑛  =  𝑁  →  ( 𝑘  freeLMod  ( 0 ... 𝑛 ) )  =  ( 𝑘  freeLMod  ( 0 ... 𝑁 ) ) ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( 𝑛  =  𝑁  →  ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘  freeLMod  ( 0 ... 𝑛 ) ) )  =  ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘  freeLMod  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 4 |  | fvoveq1 | ⊢ ( 𝑘  =  𝐾  →  ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘  freeLMod  ( 0 ... 𝑁 ) ) )  =  ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 5 |  | df-prjspn | ⊢ ℙ𝕣𝕠𝕛n  =  ( 𝑛  ∈  ℕ0 ,  𝑘  ∈  DivRing  ↦  ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘  freeLMod  ( 0 ... 𝑛 ) ) ) ) | 
						
							| 6 |  | fvex | ⊢ ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) )  ∈  V | 
						
							| 7 | 3 4 5 6 | ovmpo | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  DivRing )  →  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )  =  ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) ) ) |