Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) = ( 𝑘 freeLMod ( 0 ... 𝑁 ) ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑁 ) ) ) ) |
4 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝐾 → ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑁 ) ) ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
5 |
|
df-prjspn |
⊢ ℙ𝕣𝕠𝕛n = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ DivRing ↦ ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) ) ) |
6 |
|
fvex |
⊢ ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∈ V |
7 |
3 4 5 6
|
ovmpo |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |