Metamath Proof Explorer


Definition df-prjspn

Description: Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl . This space is considered n-dimensional because the vector space ( k freeLMod ( 0 ... n ) ) is (n+1)-dimensional and the PrjSp function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023)

Ref Expression
Assertion df-prjspn ℙ𝕣𝕠𝕛n = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ DivRing ↦ ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprjspn ℙ𝕣𝕠𝕛n
1 vn 𝑛
2 cn0 0
3 vk 𝑘
4 cdr DivRing
5 cprjsp ℙ𝕣𝕠𝕛
6 3 cv 𝑘
7 cfrlm freeLMod
8 cc0 0
9 cfz ...
10 1 cv 𝑛
11 8 10 9 co ( 0 ... 𝑛 )
12 6 11 7 co ( 𝑘 freeLMod ( 0 ... 𝑛 ) )
13 12 5 cfv ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) )
14 1 3 2 4 13 cmpo ( 𝑛 ∈ ℕ0 , 𝑘 ∈ DivRing ↦ ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) ) )
15 0 14 wceq ℙ𝕣𝕠𝕛n = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ DivRing ↦ ( ℙ𝕣𝕠𝕛 ‘ ( 𝑘 freeLMod ( 0 ... 𝑛 ) ) ) )