Metamath Proof Explorer


Definition df-prjspn

Description: Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl . This space is considered n-dimensional because the vector space ( k freeLMod ( 0 ... n ) ) is (n+1)-dimensional and the PrjSp function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023)

Ref Expression
Assertion df-prjspn ℙ𝕣𝕠𝕛n=n0,kDivRingℙ𝕣𝕠𝕛kfreeLMod0n

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprjspn classℙ𝕣𝕠𝕛n
1 vn setvarn
2 cn0 class0
3 vk setvark
4 cdr classDivRing
5 cprjsp classℙ𝕣𝕠𝕛
6 3 cv setvark
7 cfrlm classfreeLMod
8 cc0 class0
9 cfz class
10 1 cv setvarn
11 8 10 9 co class0n
12 6 11 7 co classkfreeLMod0n
13 12 5 cfv classℙ𝕣𝕠𝕛kfreeLMod0n
14 1 3 2 4 13 cmpo classn0,kDivRingℙ𝕣𝕠𝕛kfreeLMod0n
15 0 14 wceq wffℙ𝕣𝕠𝕛n=n0,kDivRingℙ𝕣𝕠𝕛kfreeLMod0n