Metamath Proof Explorer


Theorem prjspnval

Description: Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023)

Ref Expression
Assertion prjspnval N 0 K DivRing N ℙ𝕣𝕠𝕛 n K = ℙ𝕣𝕠𝕛 K freeLMod 0 N

Proof

Step Hyp Ref Expression
1 oveq2 n = N 0 n = 0 N
2 1 oveq2d n = N k freeLMod 0 n = k freeLMod 0 N
3 2 fveq2d n = N ℙ𝕣𝕠𝕛 k freeLMod 0 n = ℙ𝕣𝕠𝕛 k freeLMod 0 N
4 fvoveq1 k = K ℙ𝕣𝕠𝕛 k freeLMod 0 N = ℙ𝕣𝕠𝕛 K freeLMod 0 N
5 df-prjspn ℙ𝕣𝕠𝕛 n = n 0 , k DivRing ℙ𝕣𝕠𝕛 k freeLMod 0 n
6 fvex ℙ𝕣𝕠𝕛 K freeLMod 0 N V
7 3 4 5 6 ovmpo N 0 K DivRing N ℙ𝕣𝕠𝕛 n K = ℙ𝕣𝕠𝕛 K freeLMod 0 N