Step |
Hyp |
Ref |
Expression |
1 |
|
prjspnerlem.e |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
prjspnerlem.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) |
3 |
|
prjspnerlem.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
4 |
|
prjspnerlem.s |
⊢ 𝑆 = ( Base ‘ 𝐾 ) |
5 |
|
prjspnerlem.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
ovex |
⊢ ( 0 ... 𝑁 ) ∈ V |
7 |
2
|
frlmsca |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 𝑁 ) ∈ V ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝐾 ∈ DivRing → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝐾 ∈ DivRing → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
10 |
4 9
|
eqtrid |
⊢ ( 𝐾 ∈ DivRing → 𝑆 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
11 |
10
|
rexeqdv |
⊢ ( 𝐾 ∈ DivRing → ( ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ↔ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝐾 ∈ DivRing → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) ) ) |
13 |
12
|
opabbidv |
⊢ ( 𝐾 ∈ DivRing → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } ) |
14 |
1 13
|
eqtrid |
⊢ ( 𝐾 ∈ DivRing → ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } ) |