| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnerlem.e |  |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } | 
						
							| 2 |  | prjspnerlem.w |  |-  W = ( K freeLMod ( 0 ... N ) ) | 
						
							| 3 |  | prjspnerlem.b |  |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } ) | 
						
							| 4 |  | prjspnerlem.s |  |-  S = ( Base ` K ) | 
						
							| 5 |  | prjspnerlem.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | ovex |  |-  ( 0 ... N ) e. _V | 
						
							| 7 | 2 | frlmsca |  |-  ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> K = ( Scalar ` W ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( K e. DivRing -> K = ( Scalar ` W ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( K e. DivRing -> ( Base ` K ) = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 10 | 4 9 | eqtrid |  |-  ( K e. DivRing -> S = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 11 | 10 | rexeqdv |  |-  ( K e. DivRing -> ( E. l e. S x = ( l .x. y ) <-> E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( K e. DivRing -> ( ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) <-> ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) ) ) | 
						
							| 13 | 12 | opabbidv |  |-  ( K e. DivRing -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) | 
						
							| 14 | 1 13 | eqtrid |  |-  ( K e. DivRing -> .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) |