| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnval2.e |  |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } | 
						
							| 2 |  | prjspnval2.w |  |-  W = ( K freeLMod ( 0 ... N ) ) | 
						
							| 3 |  | prjspnval2.b |  |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } ) | 
						
							| 4 |  | prjspnval2.s |  |-  S = ( Base ` K ) | 
						
							| 5 |  | prjspnval2.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | prjspnval |  |-  ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) ) | 
						
							| 7 | 2 | fveq2i |  |-  ( PrjSp ` W ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) | 
						
							| 8 |  | ovex |  |-  ( 0 ... N ) e. _V | 
						
							| 9 | 2 | frlmlvec |  |-  ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> W e. LVec ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( K e. DivRing -> W e. LVec ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 12 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 13 | 3 5 11 12 | prjspval |  |-  ( W e. LVec -> ( PrjSp ` W ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) ) | 
						
							| 14 | 10 13 | syl |  |-  ( K e. DivRing -> ( PrjSp ` W ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) ) | 
						
							| 15 | 1 2 3 4 5 | prjspnerlem |  |-  ( K e. DivRing -> .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) | 
						
							| 16 | 15 | qseq2d |  |-  ( K e. DivRing -> ( B /. .~ ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) ) | 
						
							| 17 | 14 16 | eqtr4d |  |-  ( K e. DivRing -> ( PrjSp ` W ) = ( B /. .~ ) ) | 
						
							| 18 | 7 17 | eqtr3id |  |-  ( K e. DivRing -> ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) = ( B /. .~ ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( N e. NN0 /\ K e. DivRing ) -> ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) = ( B /. .~ ) ) | 
						
							| 20 | 6 19 | eqtrd |  |-  ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( B /. .~ ) ) |