| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjspnval2.e |
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } |
| 2 |
|
prjspnval2.w |
|- W = ( K freeLMod ( 0 ... N ) ) |
| 3 |
|
prjspnval2.b |
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } ) |
| 4 |
|
prjspnval2.s |
|- S = ( Base ` K ) |
| 5 |
|
prjspnval2.x |
|- .x. = ( .s ` W ) |
| 6 |
|
prjspnval |
|- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) ) |
| 7 |
2
|
fveq2i |
|- ( PrjSp ` W ) = ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) |
| 8 |
|
ovex |
|- ( 0 ... N ) e. _V |
| 9 |
2
|
frlmlvec |
|- ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> W e. LVec ) |
| 10 |
8 9
|
mpan2 |
|- ( K e. DivRing -> W e. LVec ) |
| 11 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 12 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 13 |
3 5 11 12
|
prjspval |
|- ( W e. LVec -> ( PrjSp ` W ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) ) |
| 14 |
10 13
|
syl |
|- ( K e. DivRing -> ( PrjSp ` W ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) ) |
| 15 |
1 2 3 4 5
|
prjspnerlem |
|- ( K e. DivRing -> .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) |
| 16 |
15
|
qseq2d |
|- ( K e. DivRing -> ( B /. .~ ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) ) |
| 17 |
14 16
|
eqtr4d |
|- ( K e. DivRing -> ( PrjSp ` W ) = ( B /. .~ ) ) |
| 18 |
7 17
|
eqtr3id |
|- ( K e. DivRing -> ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) = ( B /. .~ ) ) |
| 19 |
18
|
adantl |
|- ( ( N e. NN0 /\ K e. DivRing ) -> ( PrjSp ` ( K freeLMod ( 0 ... N ) ) ) = ( B /. .~ ) ) |
| 20 |
6 19
|
eqtrd |
|- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( B /. .~ ) ) |