Metamath Proof Explorer


Theorem prjspner

Description: The relation used to define PrjSp (and indirectly PrjSpn through df-prjspn ) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr and prjspersym (see prjspnerlem ). Several theorems are covered in one thanks to the theorems around df-er . (Contributed by SN, 14-Aug-2023)

Ref Expression
Hypotheses prjspner.e
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) }
prjspner.w
|- W = ( K freeLMod ( 0 ... N ) )
prjspner.b
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } )
prjspner.s
|- S = ( Base ` K )
prjspner.x
|- .x. = ( .s ` W )
prjspner.k
|- ( ph -> K e. DivRing )
Assertion prjspner
|- ( ph -> .~ Er B )

Proof

Step Hyp Ref Expression
1 prjspner.e
 |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) }
2 prjspner.w
 |-  W = ( K freeLMod ( 0 ... N ) )
3 prjspner.b
 |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } )
4 prjspner.s
 |-  S = ( Base ` K )
5 prjspner.x
 |-  .x. = ( .s ` W )
6 prjspner.k
 |-  ( ph -> K e. DivRing )
7 ovexd
 |-  ( ph -> ( 0 ... N ) e. _V )
8 2 frlmlvec
 |-  ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> W e. LVec )
9 6 7 8 syl2anc
 |-  ( ph -> W e. LVec )
10 eqid
 |-  { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) }
11 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
12 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
13 10 3 11 5 12 prjsper
 |-  ( W e. LVec -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } Er B )
14 9 13 syl
 |-  ( ph -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } Er B )
15 1 2 3 4 5 prjspnerlem
 |-  ( K e. DivRing -> .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } )
16 ereq1
 |-  ( .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } -> ( .~ Er B <-> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } Er B ) )
17 6 15 16 3syl
 |-  ( ph -> ( .~ Er B <-> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } Er B ) )
18 14 17 mpbird
 |-  ( ph -> .~ Er B )