| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspner.e | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝑆 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspner.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) | 
						
							| 3 |  | prjspner.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 4 |  | prjspner.s | ⊢ 𝑆  =  ( Base ‘ 𝐾 ) | 
						
							| 5 |  | prjspner.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | prjspner.k | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 7 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ∈  V ) | 
						
							| 8 | 2 | frlmlvec | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 𝑁 )  ∈  V )  →  𝑊  ∈  LVec ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 10 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 13 | 10 3 11 5 12 | prjsper | ⊢ ( 𝑊  ∈  LVec  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) }  Er  𝐵 ) | 
						
							| 14 | 9 13 | syl | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) }  Er  𝐵 ) | 
						
							| 15 | 1 2 3 4 5 | prjspnerlem | ⊢ ( 𝐾  ∈  DivRing  →   ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) | 
						
							| 16 |  | ereq1 | ⊢ (  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) }  →  (  ∼   Er  𝐵  ↔  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) }  Er  𝐵 ) ) | 
						
							| 17 | 6 15 16 | 3syl | ⊢ ( 𝜑  →  (  ∼   Er  𝐵  ↔  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) }  Er  𝐵 ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( 𝜑  →   ∼   Er  𝐵 ) |