Metamath Proof Explorer


Theorem prjspner

Description: The relation used to define PrjSp (and indirectly PrjSpn through df-prjspn ) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr and prjspersym (see prjspnerlem ). Several theorems are covered in one thanks to the theorems around df-er . (Contributed by SN, 14-Aug-2023)

Ref Expression
Hypotheses prjspner.e = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) }
prjspner.w 𝑊 = ( 𝐾 freeLMod ( 0 ... 𝑁 ) )
prjspner.b 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } )
prjspner.s 𝑆 = ( Base ‘ 𝐾 )
prjspner.x · = ( ·𝑠𝑊 )
prjspner.k ( 𝜑𝐾 ∈ DivRing )
Assertion prjspner ( 𝜑 Er 𝐵 )

Proof

Step Hyp Ref Expression
1 prjspner.e = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) }
2 prjspner.w 𝑊 = ( 𝐾 freeLMod ( 0 ... 𝑁 ) )
3 prjspner.b 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } )
4 prjspner.s 𝑆 = ( Base ‘ 𝐾 )
5 prjspner.x · = ( ·𝑠𝑊 )
6 prjspner.k ( 𝜑𝐾 ∈ DivRing )
7 ovexd ( 𝜑 → ( 0 ... 𝑁 ) ∈ V )
8 2 frlmlvec ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 𝑁 ) ∈ V ) → 𝑊 ∈ LVec )
9 6 7 8 syl2anc ( 𝜑𝑊 ∈ LVec )
10 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) }
11 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
12 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
13 10 3 11 5 12 prjsper ( 𝑊 ∈ LVec → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } Er 𝐵 )
14 9 13 syl ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } Er 𝐵 )
15 1 2 3 4 5 prjspnerlem ( 𝐾 ∈ DivRing → = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } )
16 ereq1 ( = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } → ( Er 𝐵 ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } Er 𝐵 ) )
17 6 15 16 3syl ( 𝜑 → ( Er 𝐵 ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } Er 𝐵 ) )
18 14 17 mpbird ( 𝜑 Er 𝐵 )