| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnvs.e | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝑆 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspnvs.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) | 
						
							| 3 |  | prjspnvs.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 4 |  | prjspnvs.s | ⊢ 𝑆  =  ( Base ‘ 𝐾 ) | 
						
							| 5 |  | prjspnvs.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | prjspnvs.0 | ⊢  0   =  ( 0g ‘ 𝐾 ) | 
						
							| 7 |  | prjspnvs.k | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 8 |  | prjspnvs.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | prjspnvs.2 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 10 |  | prjspnvs.3 | ⊢ ( 𝜑  →  𝐶  ≠   0  ) | 
						
							| 11 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ∈  V ) | 
						
							| 12 | 2 | frlmlvec | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 𝑁 )  ∈  V )  →  𝑊  ∈  LVec ) | 
						
							| 13 | 7 11 12 | syl2anc | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 14 |  | nelsn | ⊢ ( 𝐶  ≠   0   →  ¬  𝐶  ∈  {  0  } ) | 
						
							| 15 | 10 14 | syl | ⊢ ( 𝜑  →  ¬  𝐶  ∈  {  0  } ) | 
						
							| 16 | 9 15 | eldifd | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑆  ∖  {  0  } ) ) | 
						
							| 17 | 2 | frlmsca | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 𝑁 )  ∈  V )  →  𝐾  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 18 | 7 11 17 | syl2anc | ⊢ ( 𝜑  →  𝐾  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 20 | 4 19 | eqtrid | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 21 | 18 | fveq2d | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 22 | 6 21 | eqtrid | ⊢ ( 𝜑  →   0   =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 23 | 22 | sneqd | ⊢ ( 𝜑  →  {  0  }  =  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 24 | 20 23 | difeq12d | ⊢ ( 𝜑  →  ( 𝑆  ∖  {  0  } )  =  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 25 | 16 24 | eleqtrd | ⊢ ( 𝜑  →  𝐶  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 26 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 27 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 29 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 30 | 26 3 27 5 28 29 | prjspvs | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑋  ∈  𝐵  ∧  𝐶  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( 𝐶  ·  𝑋 ) { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } 𝑋 ) | 
						
							| 31 | 13 8 25 30 | syl3anc | ⊢ ( 𝜑  →  ( 𝐶  ·  𝑋 ) { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } 𝑋 ) | 
						
							| 32 | 1 2 3 4 5 | prjspnerlem | ⊢ ( 𝐾  ∈  DivRing  →   ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) | 
						
							| 33 | 7 32 | syl | ⊢ ( 𝜑  →   ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) | 
						
							| 34 | 33 | breqd | ⊢ ( 𝜑  →  ( ( 𝐶  ·  𝑋 )  ∼  𝑋  ↔  ( 𝐶  ·  𝑋 ) { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } 𝑋 ) ) | 
						
							| 35 | 31 34 | mpbird | ⊢ ( 𝜑  →  ( 𝐶  ·  𝑋 )  ∼  𝑋 ) |