Step |
Hyp |
Ref |
Expression |
1 |
|
0prjspnlem.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
2 |
|
0prjspnlem.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 0 ) ) |
3 |
|
0prjspnlem.1 |
⊢ 1 = ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) |
4 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
5 |
|
ovex |
⊢ ( 0 ... 0 ) ∈ V |
6 |
|
c0ex |
⊢ 0 ∈ V |
7 |
6
|
snid |
⊢ 0 ∈ { 0 } |
8 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
9 |
7 8
|
eleqtrri |
⊢ 0 ∈ ( 0 ... 0 ) |
10 |
|
nzrring |
⊢ ( 𝐾 ∈ NzRing → 𝐾 ∈ Ring ) |
11 |
|
eqid |
⊢ ( 𝐾 unitVec ( 0 ... 0 ) ) = ( 𝐾 unitVec ( 0 ... 0 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
13 |
11 2 12
|
uvccl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 0 ... 0 ) ∈ V ∧ 0 ∈ ( 0 ... 0 ) ) → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑊 ) ) |
14 |
10 13
|
syl3an1 |
⊢ ( ( 𝐾 ∈ NzRing ∧ ( 0 ... 0 ) ∈ V ∧ 0 ∈ ( 0 ... 0 ) ) → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑊 ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
16 |
11 2 12 15
|
uvcn0 |
⊢ ( ( 𝐾 ∈ NzRing ∧ ( 0 ... 0 ) ∈ V ∧ 0 ∈ ( 0 ... 0 ) ) → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ≠ ( 0g ‘ 𝑊 ) ) |
17 |
|
eldifsn |
⊢ ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ↔ ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ≠ ( 0g ‘ 𝑊 ) ) ) |
18 |
14 16 17
|
sylanbrc |
⊢ ( ( 𝐾 ∈ NzRing ∧ ( 0 ... 0 ) ∈ V ∧ 0 ∈ ( 0 ... 0 ) ) → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
19 |
5 9 18
|
mp3an23 |
⊢ ( 𝐾 ∈ NzRing → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
20 |
4 19
|
syl |
⊢ ( 𝐾 ∈ DivRing → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
21 |
20 3 1
|
3eltr4g |
⊢ ( 𝐾 ∈ DivRing → 1 ∈ 𝐵 ) |