Metamath Proof Explorer


Theorem 0prjspnlem

Description: Lemma for 0prjspn . The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023)

Ref Expression
Hypotheses 0prjspnlem.b B=BaseW0W
0prjspnlem.w W=KfreeLMod00
0prjspnlem.1 1˙=KunitVec000
Assertion 0prjspnlem KDivRing1˙B

Proof

Step Hyp Ref Expression
1 0prjspnlem.b B=BaseW0W
2 0prjspnlem.w W=KfreeLMod00
3 0prjspnlem.1 1˙=KunitVec000
4 drngnzr KDivRingKNzRing
5 ovex 00V
6 c0ex 0V
7 6 snid 00
8 fz0sn 00=0
9 7 8 eleqtrri 000
10 nzrring KNzRingKRing
11 eqid KunitVec00=KunitVec00
12 eqid BaseW=BaseW
13 11 2 12 uvccl KRing00V000KunitVec000BaseW
14 10 13 syl3an1 KNzRing00V000KunitVec000BaseW
15 eqid 0W=0W
16 11 2 12 15 uvcn0 KNzRing00V000KunitVec0000W
17 eldifsn KunitVec000BaseW0WKunitVec000BaseWKunitVec0000W
18 14 16 17 sylanbrc KNzRing00V000KunitVec000BaseW0W
19 5 9 18 mp3an23 KNzRingKunitVec000BaseW0W
20 4 19 syl KDivRingKunitVec000BaseW0W
21 20 3 1 3eltr4g KDivRing1˙B