Metamath Proof Explorer


Theorem uvccl

Description: A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023)

Ref Expression
Hypotheses uvccl.u U=RunitVecI
uvccl.y Y=RfreeLModI
uvccl.b B=BaseY
Assertion uvccl RRingIWJIUJB

Proof

Step Hyp Ref Expression
1 uvccl.u U=RunitVecI
2 uvccl.y Y=RfreeLModI
3 uvccl.b B=BaseY
4 1 2 3 uvcff RRingIWU:IB
5 4 3adant3 RRingIWJIU:IB
6 simp3 RRingIWJIJI
7 5 6 ffvelcdmd RRingIWJIUJB