Description: A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uvccl.u | ⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) | |
uvccl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | ||
uvccl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
Assertion | uvccl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvccl.u | ⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) | |
2 | uvccl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
3 | uvccl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
4 | 1 2 3 | uvcff | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
5 | 4 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
6 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝐽 ∈ 𝐼 ) | |
7 | 5 6 | ffvelrnd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) ∈ 𝐵 ) |