Description: A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uvccl.u | ⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) | |
| uvccl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | ||
| uvccl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | uvccl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) ∈ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uvccl.u | ⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) | |
| 2 | uvccl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 3 | uvccl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | 1 2 3 | uvcff | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) | 
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) | 
| 6 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝐽 ∈ 𝐼 ) | |
| 7 | 5 6 | ffvelcdmd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) ∈ 𝐵 ) |