Description: A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uvccl.u | |- U = ( R unitVec I ) |
|
| uvccl.y | |- Y = ( R freeLMod I ) |
||
| uvccl.b | |- B = ( Base ` Y ) |
||
| Assertion | uvccl | |- ( ( R e. Ring /\ I e. W /\ J e. I ) -> ( U ` J ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvccl.u | |- U = ( R unitVec I ) |
|
| 2 | uvccl.y | |- Y = ( R freeLMod I ) |
|
| 3 | uvccl.b | |- B = ( Base ` Y ) |
|
| 4 | 1 2 3 | uvcff | |- ( ( R e. Ring /\ I e. W ) -> U : I --> B ) |
| 5 | 4 | 3adant3 | |- ( ( R e. Ring /\ I e. W /\ J e. I ) -> U : I --> B ) |
| 6 | simp3 | |- ( ( R e. Ring /\ I e. W /\ J e. I ) -> J e. I ) |
|
| 7 | 5 6 | ffvelcdmd | |- ( ( R e. Ring /\ I e. W /\ J e. I ) -> ( U ` J ) e. B ) |