| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uvcn0.u |  |-  U = ( R unitVec I ) | 
						
							| 2 |  | uvcn0.y |  |-  Y = ( R freeLMod I ) | 
						
							| 3 |  | uvcn0.b |  |-  B = ( Base ` Y ) | 
						
							| 4 |  | uvcn0.0 |  |-  .0. = ( 0g ` Y ) | 
						
							| 5 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 7 | 5 6 | nzrnz |  |-  ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 9 |  | simp1 |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> R e. NzRing ) | 
						
							| 10 |  | simp2 |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> I e. W ) | 
						
							| 11 |  | simp3 |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> J e. I ) | 
						
							| 12 | 1 9 10 11 5 | uvcvv1 |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( U ` J ) ` J ) = ( 1r ` R ) ) | 
						
							| 13 |  | nzrring |  |-  ( R e. NzRing -> R e. Ring ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> R e. Ring ) | 
						
							| 15 | 2 6 14 10 11 | frlm0vald |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( 0g ` Y ) ` J ) = ( 0g ` R ) ) | 
						
							| 16 | 8 12 15 | 3netr4d |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( U ` J ) ` J ) =/= ( ( 0g ` Y ) ` J ) ) | 
						
							| 17 |  | fveq1 |  |-  ( ( U ` J ) = ( 0g ` Y ) -> ( ( U ` J ) ` J ) = ( ( 0g ` Y ) ` J ) ) | 
						
							| 18 | 17 | necon3i |  |-  ( ( ( U ` J ) ` J ) =/= ( ( 0g ` Y ) ` J ) -> ( U ` J ) =/= ( 0g ` Y ) ) | 
						
							| 19 | 16 18 | syl |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( U ` J ) =/= ( 0g ` Y ) ) | 
						
							| 20 | 4 | a1i |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> .0. = ( 0g ` Y ) ) | 
						
							| 21 | 19 20 | neeqtrrd |  |-  ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( U ` J ) =/= .0. ) |