Step |
Hyp |
Ref |
Expression |
1 |
|
uvcn0.u |
|- U = ( R unitVec I ) |
2 |
|
uvcn0.y |
|- Y = ( R freeLMod I ) |
3 |
|
uvcn0.b |
|- B = ( Base ` Y ) |
4 |
|
uvcn0.0 |
|- .0. = ( 0g ` Y ) |
5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
5 6
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
9 |
|
simp1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> R e. NzRing ) |
10 |
|
simp2 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> I e. W ) |
11 |
|
simp3 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> J e. I ) |
12 |
1 9 10 11 5
|
uvcvv1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( U ` J ) ` J ) = ( 1r ` R ) ) |
13 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
14 |
13
|
3ad2ant1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> R e. Ring ) |
15 |
2 6 14 10 11
|
frlm0vald |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( 0g ` Y ) ` J ) = ( 0g ` R ) ) |
16 |
8 12 15
|
3netr4d |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( U ` J ) ` J ) =/= ( ( 0g ` Y ) ` J ) ) |
17 |
|
fveq1 |
|- ( ( U ` J ) = ( 0g ` Y ) -> ( ( U ` J ) ` J ) = ( ( 0g ` Y ) ` J ) ) |
18 |
17
|
necon3i |
|- ( ( ( U ` J ) ` J ) =/= ( ( 0g ` Y ) ` J ) -> ( U ` J ) =/= ( 0g ` Y ) ) |
19 |
16 18
|
syl |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( U ` J ) =/= ( 0g ` Y ) ) |
20 |
4
|
a1i |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> .0. = ( 0g ` Y ) ) |
21 |
19 20
|
neeqtrrd |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( U ` J ) =/= .0. ) |