| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvcn0.u |
|- U = ( R unitVec I ) |
| 2 |
|
uvcn0.y |
|- Y = ( R freeLMod I ) |
| 3 |
|
uvcn0.b |
|- B = ( Base ` Y ) |
| 4 |
|
uvcn0.0 |
|- .0. = ( 0g ` Y ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 7 |
5 6
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 9 |
|
simp1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> R e. NzRing ) |
| 10 |
|
simp2 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> I e. W ) |
| 11 |
|
simp3 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> J e. I ) |
| 12 |
1 9 10 11 5
|
uvcvv1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( U ` J ) ` J ) = ( 1r ` R ) ) |
| 13 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> R e. Ring ) |
| 15 |
2 6 14 10 11
|
frlm0vald |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( 0g ` Y ) ` J ) = ( 0g ` R ) ) |
| 16 |
8 12 15
|
3netr4d |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( ( U ` J ) ` J ) =/= ( ( 0g ` Y ) ` J ) ) |
| 17 |
|
fveq1 |
|- ( ( U ` J ) = ( 0g ` Y ) -> ( ( U ` J ) ` J ) = ( ( 0g ` Y ) ` J ) ) |
| 18 |
17
|
necon3i |
|- ( ( ( U ` J ) ` J ) =/= ( ( 0g ` Y ) ` J ) -> ( U ` J ) =/= ( 0g ` Y ) ) |
| 19 |
16 18
|
syl |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( U ` J ) =/= ( 0g ` Y ) ) |
| 20 |
4
|
a1i |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> .0. = ( 0g ` Y ) ) |
| 21 |
19 20
|
neeqtrrd |
|- ( ( R e. NzRing /\ I e. W /\ J e. I ) -> ( U ` J ) =/= .0. ) |