| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlm0vald.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlm0vald.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
frlm0vald.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
frlm0vald.i |
|- ( ph -> I e. W ) |
| 5 |
|
frlm0vald.j |
|- ( ph -> J e. I ) |
| 6 |
1 2
|
frlm0 |
|- ( ( R e. Ring /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` F ) ) |
| 7 |
3 4 6
|
syl2anc |
|- ( ph -> ( I X. { .0. } ) = ( 0g ` F ) ) |
| 8 |
7
|
fveq1d |
|- ( ph -> ( ( I X. { .0. } ) ` J ) = ( ( 0g ` F ) ` J ) ) |
| 9 |
2
|
fvexi |
|- .0. e. _V |
| 10 |
9
|
fvconst2 |
|- ( J e. I -> ( ( I X. { .0. } ) ` J ) = .0. ) |
| 11 |
5 10
|
syl |
|- ( ph -> ( ( I X. { .0. } ) ` J ) = .0. ) |
| 12 |
8 11
|
eqtr3d |
|- ( ph -> ( ( 0g ` F ) ` J ) = .0. ) |