Step |
Hyp |
Ref |
Expression |
1 |
|
frlm0vald.f |
|- F = ( R freeLMod I ) |
2 |
|
frlm0vald.0 |
|- .0. = ( 0g ` R ) |
3 |
|
frlm0vald.r |
|- ( ph -> R e. Ring ) |
4 |
|
frlm0vald.i |
|- ( ph -> I e. W ) |
5 |
|
frlm0vald.j |
|- ( ph -> J e. I ) |
6 |
1 2
|
frlm0 |
|- ( ( R e. Ring /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` F ) ) |
7 |
3 4 6
|
syl2anc |
|- ( ph -> ( I X. { .0. } ) = ( 0g ` F ) ) |
8 |
7
|
fveq1d |
|- ( ph -> ( ( I X. { .0. } ) ` J ) = ( ( 0g ` F ) ` J ) ) |
9 |
2
|
fvexi |
|- .0. e. _V |
10 |
9
|
fvconst2 |
|- ( J e. I -> ( ( I X. { .0. } ) ` J ) = .0. ) |
11 |
5 10
|
syl |
|- ( ph -> ( ( I X. { .0. } ) ` J ) = .0. ) |
12 |
8 11
|
eqtr3d |
|- ( ph -> ( ( 0g ` F ) ` J ) = .0. ) |