Metamath Proof Explorer


Theorem frlm0vald

Description: All coordinates of the zero vector are zero. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses frlm0vald.f F=RfreeLModI
frlm0vald.0 0˙=0R
frlm0vald.r φRRing
frlm0vald.i φIW
frlm0vald.j φJI
Assertion frlm0vald φ0FJ=0˙

Proof

Step Hyp Ref Expression
1 frlm0vald.f F=RfreeLModI
2 frlm0vald.0 0˙=0R
3 frlm0vald.r φRRing
4 frlm0vald.i φIW
5 frlm0vald.j φJI
6 1 2 frlm0 RRingIWI×0˙=0F
7 3 4 6 syl2anc φI×0˙=0F
8 7 fveq1d φI×0˙J=0FJ
9 2 fvexi 0˙V
10 9 fvconst2 JII×0˙J=0˙
11 5 10 syl φI×0˙J=0˙
12 8 11 eqtr3d φ0FJ=0˙