Metamath Proof Explorer


Theorem frlmsnic

Description: Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023)

Ref Expression
Hypotheses frlmsnic.w W=KfreeLModI
frlmsnic.1 F=xBaseWxI
Assertion frlmsnic KRingIVFWLMIsoringLModK

Proof

Step Hyp Ref Expression
1 frlmsnic.w W=KfreeLModI
2 frlmsnic.1 F=xBaseWxI
3 eqid BaseW=BaseW
4 eqid W=W
5 eqid ringLModK=ringLModK
6 eqid ScalarW=ScalarW
7 eqid ScalarringLModK=ScalarringLModK
8 eqid BaseScalarW=BaseScalarW
9 snex IV
10 1 frlmlmod KRingIVWLMod
11 9 10 mpan2 KRingWLMod
12 11 adantr KRingIVWLMod
13 rlmlmod KRingringLModKLMod
14 13 adantr KRingIVringLModKLMod
15 rlmsca KRingK=ScalarringLModK
16 15 adantr KRingIVK=ScalarringLModK
17 1 frlmsca KRingIVK=ScalarW
18 9 17 mpan2 KRingK=ScalarW
19 18 adantr KRingIVK=ScalarW
20 16 19 eqtr3d KRingIVScalarringLModK=ScalarW
21 rlmbas BaseK=BaseringLModK
22 eqid +W=+W
23 rlmplusg +K=+ringLModK
24 lmodgrp WLModWGrp
25 12 24 syl KRingIVWGrp
26 lmodgrp ringLModKLModringLModKGrp
27 13 26 syl KRingringLModKGrp
28 27 adantr KRingIVringLModKGrp
29 eqid BaseK=BaseK
30 1 29 3 frlmbasf IVxBaseWx:IBaseK
31 9 30 mpan xBaseWx:IBaseK
32 31 adantl KRingIVxBaseWx:IBaseK
33 snidg IVII
34 33 adantl KRingIVII
35 34 adantr KRingIVxBaseWII
36 32 35 ffvelcdmd KRingIVxBaseWxIBaseK
37 36 2 fmptd KRingIVF:BaseWBaseK
38 simpll KRingIVxBaseWyBaseWKRing
39 9 a1i KRingIVxBaseWyBaseWIV
40 simprl KRingIVxBaseWyBaseWxBaseW
41 simprr KRingIVxBaseWyBaseWyBaseW
42 34 adantr KRingIVxBaseWyBaseWII
43 eqid +K=+K
44 1 3 38 39 40 41 42 43 22 frlmvplusgvalc KRingIVxBaseWyBaseWx+WyI=xI+KyI
45 12 adantr KRingIVxBaseWyBaseWWLMod
46 3 22 lmodvacl WLModxBaseWyBaseWx+WyBaseW
47 45 40 41 46 syl3anc KRingIVxBaseWyBaseWx+WyBaseW
48 fveq1 t=x+WytI=x+WyI
49 fveq1 x=txI=tI
50 49 cbvmptv xBaseWxI=tBaseWtI
51 2 50 eqtri F=tBaseWtI
52 fvexd tBaseWtIV
53 48 51 52 fvmpt3 x+WyBaseWFx+Wy=x+WyI
54 47 53 syl KRingIVxBaseWyBaseWFx+Wy=x+WyI
55 2 a1i KRingIVxBaseWyBaseWF=xBaseWxI
56 fvexd KRingIVxBaseWyBaseWxBaseWxIV
57 55 56 fvmpt2d KRingIVxBaseWyBaseWxBaseWFx=xI
58 40 57 mpdan KRingIVxBaseWyBaseWFx=xI
59 fveq1 x=yxI=yI
60 fvexd xBaseWxIV
61 59 2 60 fvmpt3 yBaseWFy=yI
62 41 61 syl KRingIVxBaseWyBaseWFy=yI
63 58 62 oveq12d KRingIVxBaseWyBaseWFx+KFy=xI+KyI
64 44 54 63 3eqtr4d KRingIVxBaseWyBaseWFx+Wy=Fx+KFy
65 3 21 22 23 25 28 37 64 isghmd KRingIVFWGrpHomringLModK
66 9 a1i KRingIVxBaseScalarWyBaseWIV
67 19 eqcomd KRingIVScalarW=K
68 67 fveq2d KRingIVBaseScalarW=BaseK
69 68 eleq2d KRingIVxBaseScalarWxBaseK
70 69 biimpa KRingIVxBaseScalarWxBaseK
71 70 adantrr KRingIVxBaseScalarWyBaseWxBaseK
72 simprr KRingIVxBaseScalarWyBaseWyBaseW
73 34 adantr KRingIVxBaseScalarWyBaseWII
74 eqid K=K
75 1 3 29 66 71 72 73 4 74 frlmvscaval KRingIVxBaseScalarWyBaseWxWyI=xKyI
76 rlmvsca K=ringLModK
77 76 oveqi xKyI=xringLModKyI
78 75 77 eqtrdi KRingIVxBaseScalarWyBaseWxWyI=xringLModKyI
79 fveq1 x=uxI=uI
80 79 cbvmptv xBaseWxI=uBaseWuI
81 2 80 eqtri F=uBaseWuI
82 fveq1 u=xWyuI=xWyI
83 9 a1i IVIV
84 83 10 sylan2 KRingIVWLMod
85 84 adantr KRingIVxBaseScalarWyBaseWWLMod
86 simprl KRingIVxBaseScalarWyBaseWxBaseScalarW
87 3 6 4 8 85 86 72 lmodvscld KRingIVxBaseScalarWyBaseWxWyBaseW
88 fvexd KRingIVxBaseScalarWyBaseWxWyIV
89 81 82 87 88 fvmptd3 KRingIVxBaseScalarWyBaseWFxWy=xWyI
90 fvex xIV
91 59 2 90 fvmpt3i yBaseWFy=yI
92 72 91 syl KRingIVxBaseScalarWyBaseWFy=yI
93 92 oveq2d KRingIVxBaseScalarWyBaseWxringLModKFy=xringLModKyI
94 78 89 93 3eqtr4d KRingIVxBaseScalarWyBaseWFxWy=xringLModKFy
95 3 4 5 6 7 8 12 14 20 65 94 islmhmd KRingIVFWLMHomringLModK
96 simplr KRingIVyBaseKIV
97 simpr KRingIVyBaseKyBaseK
98 96 97 fsnd KRingIVyBaseKIy:IBaseK
99 simpll KRingIVyBaseKKRing
100 snfi IFin
101 1 29 3 frlmfielbas KRingIFinIyBaseWIy:IBaseK
102 99 100 101 sylancl KRingIVyBaseKIyBaseWIy:IBaseK
103 98 102 mpbird KRingIVyBaseKIyBaseW
104 fveq1 x=IyxI=IyI
105 104 adantl KRingIVxBaseWyBaseKx=IyxI=IyI
106 simpllr KRingIVxBaseWyBaseKx=IyIV
107 vex yV
108 fvsng IVyVIyI=y
109 106 107 108 sylancl KRingIVxBaseWyBaseKx=IyIyI=y
110 105 109 eqtr2d KRingIVxBaseWyBaseKx=Iyy=xI
111 110 ex KRingIVxBaseWyBaseKx=Iyy=xI
112 simplr KRingIVxBaseWyBaseKIV
113 32 adantrr KRingIVxBaseWyBaseKx:IBaseK
114 113 ffnd KRingIVxBaseWyBaseKxFnI
115 fnsnbt IVxFnIx=IxI
116 115 biimpd IVxFnIx=IxI
117 112 114 116 sylc KRingIVxBaseWyBaseKx=IxI
118 opeq2 y=xIIy=IxI
119 118 sneqd y=xIIy=IxI
120 119 eqeq2d y=xIx=Iyx=IxI
121 117 120 syl5ibrcom KRingIVxBaseWyBaseKy=xIx=Iy
122 111 121 impbid KRingIVxBaseWyBaseKx=Iyy=xI
123 2 36 103 122 f1o2d KRingIVF:BaseW1-1 ontoBaseK
124 21 a1i KRingIVBaseK=BaseringLModK
125 124 f1oeq3d KRingIVF:BaseW1-1 ontoBaseKF:BaseW1-1 ontoBaseringLModK
126 123 125 mpbid KRingIVF:BaseW1-1 ontoBaseringLModK
127 eqid BaseringLModK=BaseringLModK
128 3 127 islmim FWLMIsoringLModKFWLMHomringLModKF:BaseW1-1 ontoBaseringLModK
129 95 126 128 sylanbrc KRingIVFWLMIsoringLModK