Metamath Proof Explorer


Theorem fnsnbt

Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023)

Ref Expression
Assertion fnsnbt AVFFnAF=AFA

Proof

Step Hyp Ref Expression
1 fnsnr FFnAxFx=AFA
2 1 adantl AVFFnAxFx=AFA
3 fnfun FFnAFunF
4 snidg AVAA
5 4 adantr AVFFnAAA
6 fndm FFnAdomF=A
7 6 adantl AVFFnAdomF=A
8 5 7 eleqtrrd AVFFnAAdomF
9 funfvop FunFAdomFAFAF
10 3 8 9 syl2an2 AVFFnAAFAF
11 eleq1 x=AFAxFAFAF
12 10 11 syl5ibrcom AVFFnAx=AFAxF
13 2 12 impbid AVFFnAxFx=AFA
14 velsn xAFAx=AFA
15 13 14 bitr4di AVFFnAxFxAFA
16 15 eqrdv AVFFnAF=AFA
17 16 ex AVFFnAF=AFA
18 fvex FAV
19 fnsng AVFAVAFAFnA
20 18 19 mpan2 AVAFAFnA
21 fneq1 F=AFAFFnAAFAFnA
22 20 21 syl5ibrcom AVF=AFAFFnA
23 17 22 impbid AVFFnAF=AFA