| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmsnic.w |
|- W = ( K freeLMod { I } ) |
| 2 |
|
frlmsnic.1 |
|- F = ( x e. ( Base ` W ) |-> ( x ` I ) ) |
| 3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 4 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 5 |
|
eqid |
|- ( .s ` ( ringLMod ` K ) ) = ( .s ` ( ringLMod ` K ) ) |
| 6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 7 |
|
eqid |
|- ( Scalar ` ( ringLMod ` K ) ) = ( Scalar ` ( ringLMod ` K ) ) |
| 8 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 9 |
|
snex |
|- { I } e. _V |
| 10 |
1
|
frlmlmod |
|- ( ( K e. Ring /\ { I } e. _V ) -> W e. LMod ) |
| 11 |
9 10
|
mpan2 |
|- ( K e. Ring -> W e. LMod ) |
| 12 |
11
|
adantr |
|- ( ( K e. Ring /\ I e. _V ) -> W e. LMod ) |
| 13 |
|
rlmlmod |
|- ( K e. Ring -> ( ringLMod ` K ) e. LMod ) |
| 14 |
13
|
adantr |
|- ( ( K e. Ring /\ I e. _V ) -> ( ringLMod ` K ) e. LMod ) |
| 15 |
|
rlmsca |
|- ( K e. Ring -> K = ( Scalar ` ( ringLMod ` K ) ) ) |
| 16 |
15
|
adantr |
|- ( ( K e. Ring /\ I e. _V ) -> K = ( Scalar ` ( ringLMod ` K ) ) ) |
| 17 |
1
|
frlmsca |
|- ( ( K e. Ring /\ { I } e. _V ) -> K = ( Scalar ` W ) ) |
| 18 |
9 17
|
mpan2 |
|- ( K e. Ring -> K = ( Scalar ` W ) ) |
| 19 |
18
|
adantr |
|- ( ( K e. Ring /\ I e. _V ) -> K = ( Scalar ` W ) ) |
| 20 |
16 19
|
eqtr3d |
|- ( ( K e. Ring /\ I e. _V ) -> ( Scalar ` ( ringLMod ` K ) ) = ( Scalar ` W ) ) |
| 21 |
|
rlmbas |
|- ( Base ` K ) = ( Base ` ( ringLMod ` K ) ) |
| 22 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 23 |
|
rlmplusg |
|- ( +g ` K ) = ( +g ` ( ringLMod ` K ) ) |
| 24 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 25 |
12 24
|
syl |
|- ( ( K e. Ring /\ I e. _V ) -> W e. Grp ) |
| 26 |
|
lmodgrp |
|- ( ( ringLMod ` K ) e. LMod -> ( ringLMod ` K ) e. Grp ) |
| 27 |
13 26
|
syl |
|- ( K e. Ring -> ( ringLMod ` K ) e. Grp ) |
| 28 |
27
|
adantr |
|- ( ( K e. Ring /\ I e. _V ) -> ( ringLMod ` K ) e. Grp ) |
| 29 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 30 |
1 29 3
|
frlmbasf |
|- ( ( { I } e. _V /\ x e. ( Base ` W ) ) -> x : { I } --> ( Base ` K ) ) |
| 31 |
9 30
|
mpan |
|- ( x e. ( Base ` W ) -> x : { I } --> ( Base ` K ) ) |
| 32 |
31
|
adantl |
|- ( ( ( K e. Ring /\ I e. _V ) /\ x e. ( Base ` W ) ) -> x : { I } --> ( Base ` K ) ) |
| 33 |
|
snidg |
|- ( I e. _V -> I e. { I } ) |
| 34 |
33
|
adantl |
|- ( ( K e. Ring /\ I e. _V ) -> I e. { I } ) |
| 35 |
34
|
adantr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ x e. ( Base ` W ) ) -> I e. { I } ) |
| 36 |
32 35
|
ffvelcdmd |
|- ( ( ( K e. Ring /\ I e. _V ) /\ x e. ( Base ` W ) ) -> ( x ` I ) e. ( Base ` K ) ) |
| 37 |
36 2
|
fmptd |
|- ( ( K e. Ring /\ I e. _V ) -> F : ( Base ` W ) --> ( Base ` K ) ) |
| 38 |
|
simpll |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> K e. Ring ) |
| 39 |
9
|
a1i |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> { I } e. _V ) |
| 40 |
|
simprl |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 41 |
|
simprr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 42 |
34
|
adantr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> I e. { I } ) |
| 43 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
| 44 |
1 3 38 39 40 41 42 43 22
|
frlmvplusgvalc |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( ( x ( +g ` W ) y ) ` I ) = ( ( x ` I ) ( +g ` K ) ( y ` I ) ) ) |
| 45 |
12
|
adantr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> W e. LMod ) |
| 46 |
3 22
|
lmodvacl |
|- ( ( W e. LMod /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ( +g ` W ) y ) e. ( Base ` W ) ) |
| 47 |
45 40 41 46
|
syl3anc |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) e. ( Base ` W ) ) |
| 48 |
|
fveq1 |
|- ( t = ( x ( +g ` W ) y ) -> ( t ` I ) = ( ( x ( +g ` W ) y ) ` I ) ) |
| 49 |
|
fveq1 |
|- ( x = t -> ( x ` I ) = ( t ` I ) ) |
| 50 |
49
|
cbvmptv |
|- ( x e. ( Base ` W ) |-> ( x ` I ) ) = ( t e. ( Base ` W ) |-> ( t ` I ) ) |
| 51 |
2 50
|
eqtri |
|- F = ( t e. ( Base ` W ) |-> ( t ` I ) ) |
| 52 |
|
fvexd |
|- ( t e. ( Base ` W ) -> ( t ` I ) e. _V ) |
| 53 |
48 51 52
|
fvmpt3 |
|- ( ( x ( +g ` W ) y ) e. ( Base ` W ) -> ( F ` ( x ( +g ` W ) y ) ) = ( ( x ( +g ` W ) y ) ` I ) ) |
| 54 |
47 53
|
syl |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( F ` ( x ( +g ` W ) y ) ) = ( ( x ( +g ` W ) y ) ` I ) ) |
| 55 |
2
|
a1i |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> F = ( x e. ( Base ` W ) |-> ( x ` I ) ) ) |
| 56 |
|
fvexd |
|- ( ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ x e. ( Base ` W ) ) -> ( x ` I ) e. _V ) |
| 57 |
55 56
|
fvmpt2d |
|- ( ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ x e. ( Base ` W ) ) -> ( F ` x ) = ( x ` I ) ) |
| 58 |
40 57
|
mpdan |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( F ` x ) = ( x ` I ) ) |
| 59 |
|
fveq1 |
|- ( x = y -> ( x ` I ) = ( y ` I ) ) |
| 60 |
|
fvexd |
|- ( x e. ( Base ` W ) -> ( x ` I ) e. _V ) |
| 61 |
59 2 60
|
fvmpt3 |
|- ( y e. ( Base ` W ) -> ( F ` y ) = ( y ` I ) ) |
| 62 |
41 61
|
syl |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( F ` y ) = ( y ` I ) ) |
| 63 |
58 62
|
oveq12d |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( ( F ` x ) ( +g ` K ) ( F ` y ) ) = ( ( x ` I ) ( +g ` K ) ( y ` I ) ) ) |
| 64 |
44 54 63
|
3eqtr4d |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( F ` ( x ( +g ` W ) y ) ) = ( ( F ` x ) ( +g ` K ) ( F ` y ) ) ) |
| 65 |
3 21 22 23 25 28 37 64
|
isghmd |
|- ( ( K e. Ring /\ I e. _V ) -> F e. ( W GrpHom ( ringLMod ` K ) ) ) |
| 66 |
9
|
a1i |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> { I } e. _V ) |
| 67 |
19
|
eqcomd |
|- ( ( K e. Ring /\ I e. _V ) -> ( Scalar ` W ) = K ) |
| 68 |
67
|
fveq2d |
|- ( ( K e. Ring /\ I e. _V ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` K ) ) |
| 69 |
68
|
eleq2d |
|- ( ( K e. Ring /\ I e. _V ) -> ( x e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` K ) ) ) |
| 70 |
69
|
biimpa |
|- ( ( ( K e. Ring /\ I e. _V ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> x e. ( Base ` K ) ) |
| 71 |
70
|
adantrr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> x e. ( Base ` K ) ) |
| 72 |
|
simprr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 73 |
34
|
adantr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> I e. { I } ) |
| 74 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 75 |
1 3 29 66 71 72 73 4 74
|
frlmvscaval |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ` I ) = ( x ( .r ` K ) ( y ` I ) ) ) |
| 76 |
|
rlmvsca |
|- ( .r ` K ) = ( .s ` ( ringLMod ` K ) ) |
| 77 |
76
|
oveqi |
|- ( x ( .r ` K ) ( y ` I ) ) = ( x ( .s ` ( ringLMod ` K ) ) ( y ` I ) ) |
| 78 |
75 77
|
eqtrdi |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ` I ) = ( x ( .s ` ( ringLMod ` K ) ) ( y ` I ) ) ) |
| 79 |
|
fveq1 |
|- ( x = u -> ( x ` I ) = ( u ` I ) ) |
| 80 |
79
|
cbvmptv |
|- ( x e. ( Base ` W ) |-> ( x ` I ) ) = ( u e. ( Base ` W ) |-> ( u ` I ) ) |
| 81 |
2 80
|
eqtri |
|- F = ( u e. ( Base ` W ) |-> ( u ` I ) ) |
| 82 |
|
fveq1 |
|- ( u = ( x ( .s ` W ) y ) -> ( u ` I ) = ( ( x ( .s ` W ) y ) ` I ) ) |
| 83 |
9
|
a1i |
|- ( I e. _V -> { I } e. _V ) |
| 84 |
83 10
|
sylan2 |
|- ( ( K e. Ring /\ I e. _V ) -> W e. LMod ) |
| 85 |
84
|
adantr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> W e. LMod ) |
| 86 |
|
simprl |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
| 87 |
3 6 4 8 85 86 72
|
lmodvscld |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( x ( .s ` W ) y ) e. ( Base ` W ) ) |
| 88 |
|
fvexd |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ` I ) e. _V ) |
| 89 |
81 82 87 88
|
fvmptd3 |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( F ` ( x ( .s ` W ) y ) ) = ( ( x ( .s ` W ) y ) ` I ) ) |
| 90 |
|
fvex |
|- ( x ` I ) e. _V |
| 91 |
59 2 90
|
fvmpt3i |
|- ( y e. ( Base ` W ) -> ( F ` y ) = ( y ` I ) ) |
| 92 |
72 91
|
syl |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( F ` y ) = ( y ` I ) ) |
| 93 |
92
|
oveq2d |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( x ( .s ` ( ringLMod ` K ) ) ( F ` y ) ) = ( x ( .s ` ( ringLMod ` K ) ) ( y ` I ) ) ) |
| 94 |
78 89 93
|
3eqtr4d |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( F ` ( x ( .s ` W ) y ) ) = ( x ( .s ` ( ringLMod ` K ) ) ( F ` y ) ) ) |
| 95 |
3 4 5 6 7 8 12 14 20 65 94
|
islmhmd |
|- ( ( K e. Ring /\ I e. _V ) -> F e. ( W LMHom ( ringLMod ` K ) ) ) |
| 96 |
|
simplr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ y e. ( Base ` K ) ) -> I e. _V ) |
| 97 |
|
simpr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ y e. ( Base ` K ) ) -> y e. ( Base ` K ) ) |
| 98 |
96 97
|
fsnd |
|- ( ( ( K e. Ring /\ I e. _V ) /\ y e. ( Base ` K ) ) -> { <. I , y >. } : { I } --> ( Base ` K ) ) |
| 99 |
|
simpll |
|- ( ( ( K e. Ring /\ I e. _V ) /\ y e. ( Base ` K ) ) -> K e. Ring ) |
| 100 |
|
snfi |
|- { I } e. Fin |
| 101 |
1 29 3
|
frlmfielbas |
|- ( ( K e. Ring /\ { I } e. Fin ) -> ( { <. I , y >. } e. ( Base ` W ) <-> { <. I , y >. } : { I } --> ( Base ` K ) ) ) |
| 102 |
99 100 101
|
sylancl |
|- ( ( ( K e. Ring /\ I e. _V ) /\ y e. ( Base ` K ) ) -> ( { <. I , y >. } e. ( Base ` W ) <-> { <. I , y >. } : { I } --> ( Base ` K ) ) ) |
| 103 |
98 102
|
mpbird |
|- ( ( ( K e. Ring /\ I e. _V ) /\ y e. ( Base ` K ) ) -> { <. I , y >. } e. ( Base ` W ) ) |
| 104 |
|
fveq1 |
|- ( x = { <. I , y >. } -> ( x ` I ) = ( { <. I , y >. } ` I ) ) |
| 105 |
104
|
adantl |
|- ( ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) /\ x = { <. I , y >. } ) -> ( x ` I ) = ( { <. I , y >. } ` I ) ) |
| 106 |
|
simpllr |
|- ( ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) /\ x = { <. I , y >. } ) -> I e. _V ) |
| 107 |
|
vex |
|- y e. _V |
| 108 |
|
fvsng |
|- ( ( I e. _V /\ y e. _V ) -> ( { <. I , y >. } ` I ) = y ) |
| 109 |
106 107 108
|
sylancl |
|- ( ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) /\ x = { <. I , y >. } ) -> ( { <. I , y >. } ` I ) = y ) |
| 110 |
105 109
|
eqtr2d |
|- ( ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) /\ x = { <. I , y >. } ) -> y = ( x ` I ) ) |
| 111 |
110
|
ex |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) -> ( x = { <. I , y >. } -> y = ( x ` I ) ) ) |
| 112 |
|
simplr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) -> I e. _V ) |
| 113 |
32
|
adantrr |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) -> x : { I } --> ( Base ` K ) ) |
| 114 |
113
|
ffnd |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) -> x Fn { I } ) |
| 115 |
|
fnsnbg |
|- ( I e. _V -> ( x Fn { I } <-> x = { <. I , ( x ` I ) >. } ) ) |
| 116 |
115
|
biimpd |
|- ( I e. _V -> ( x Fn { I } -> x = { <. I , ( x ` I ) >. } ) ) |
| 117 |
112 114 116
|
sylc |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) -> x = { <. I , ( x ` I ) >. } ) |
| 118 |
|
opeq2 |
|- ( y = ( x ` I ) -> <. I , y >. = <. I , ( x ` I ) >. ) |
| 119 |
118
|
sneqd |
|- ( y = ( x ` I ) -> { <. I , y >. } = { <. I , ( x ` I ) >. } ) |
| 120 |
119
|
eqeq2d |
|- ( y = ( x ` I ) -> ( x = { <. I , y >. } <-> x = { <. I , ( x ` I ) >. } ) ) |
| 121 |
117 120
|
syl5ibrcom |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) -> ( y = ( x ` I ) -> x = { <. I , y >. } ) ) |
| 122 |
111 121
|
impbid |
|- ( ( ( K e. Ring /\ I e. _V ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` K ) ) ) -> ( x = { <. I , y >. } <-> y = ( x ` I ) ) ) |
| 123 |
2 36 103 122
|
f1o2d |
|- ( ( K e. Ring /\ I e. _V ) -> F : ( Base ` W ) -1-1-onto-> ( Base ` K ) ) |
| 124 |
21
|
a1i |
|- ( ( K e. Ring /\ I e. _V ) -> ( Base ` K ) = ( Base ` ( ringLMod ` K ) ) ) |
| 125 |
124
|
f1oeq3d |
|- ( ( K e. Ring /\ I e. _V ) -> ( F : ( Base ` W ) -1-1-onto-> ( Base ` K ) <-> F : ( Base ` W ) -1-1-onto-> ( Base ` ( ringLMod ` K ) ) ) ) |
| 126 |
123 125
|
mpbid |
|- ( ( K e. Ring /\ I e. _V ) -> F : ( Base ` W ) -1-1-onto-> ( Base ` ( ringLMod ` K ) ) ) |
| 127 |
|
eqid |
|- ( Base ` ( ringLMod ` K ) ) = ( Base ` ( ringLMod ` K ) ) |
| 128 |
3 127
|
islmim |
|- ( F e. ( W LMIso ( ringLMod ` K ) ) <-> ( F e. ( W LMHom ( ringLMod ` K ) ) /\ F : ( Base ` W ) -1-1-onto-> ( Base ` ( ringLMod ` K ) ) ) ) |
| 129 |
95 126 128
|
sylanbrc |
|- ( ( K e. Ring /\ I e. _V ) -> F e. ( W LMIso ( ringLMod ` K ) ) ) |