Metamath Proof Explorer


Theorem frlmfielbas

Description: The vectors of a finite free module are the functions from I to N . (Contributed by SN, 31-Aug-2023)

Ref Expression
Hypotheses frlmfielbas.f
|- F = ( R freeLMod I )
frlmfielbas.n
|- N = ( Base ` R )
frlmfielbas.b
|- B = ( Base ` F )
Assertion frlmfielbas
|- ( ( R e. V /\ I e. Fin ) -> ( X e. B <-> X : I --> N ) )

Proof

Step Hyp Ref Expression
1 frlmfielbas.f
 |-  F = ( R freeLMod I )
2 frlmfielbas.n
 |-  N = ( Base ` R )
3 frlmfielbas.b
 |-  B = ( Base ` F )
4 3 eleq2i
 |-  ( X e. B <-> X e. ( Base ` F ) )
5 1 2 frlmfibas
 |-  ( ( R e. V /\ I e. Fin ) -> ( N ^m I ) = ( Base ` F ) )
6 5 eleq2d
 |-  ( ( R e. V /\ I e. Fin ) -> ( X e. ( N ^m I ) <-> X e. ( Base ` F ) ) )
7 2 fvexi
 |-  N e. _V
8 7 a1i
 |-  ( ( R e. V /\ I e. Fin ) -> N e. _V )
9 simpr
 |-  ( ( R e. V /\ I e. Fin ) -> I e. Fin )
10 8 9 elmapd
 |-  ( ( R e. V /\ I e. Fin ) -> ( X e. ( N ^m I ) <-> X : I --> N ) )
11 6 10 bitr3d
 |-  ( ( R e. V /\ I e. Fin ) -> ( X e. ( Base ` F ) <-> X : I --> N ) )
12 4 11 syl5bb
 |-  ( ( R e. V /\ I e. Fin ) -> ( X e. B <-> X : I --> N ) )