| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmfielbas.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlmfielbas.n |
|- N = ( Base ` R ) |
| 3 |
|
frlmfielbas.b |
|- B = ( Base ` F ) |
| 4 |
3
|
eleq2i |
|- ( X e. B <-> X e. ( Base ` F ) ) |
| 5 |
1 2
|
frlmfibas |
|- ( ( R e. V /\ I e. Fin ) -> ( N ^m I ) = ( Base ` F ) ) |
| 6 |
5
|
eleq2d |
|- ( ( R e. V /\ I e. Fin ) -> ( X e. ( N ^m I ) <-> X e. ( Base ` F ) ) ) |
| 7 |
2
|
fvexi |
|- N e. _V |
| 8 |
7
|
a1i |
|- ( ( R e. V /\ I e. Fin ) -> N e. _V ) |
| 9 |
|
simpr |
|- ( ( R e. V /\ I e. Fin ) -> I e. Fin ) |
| 10 |
8 9
|
elmapd |
|- ( ( R e. V /\ I e. Fin ) -> ( X e. ( N ^m I ) <-> X : I --> N ) ) |
| 11 |
6 10
|
bitr3d |
|- ( ( R e. V /\ I e. Fin ) -> ( X e. ( Base ` F ) <-> X : I --> N ) ) |
| 12 |
4 11
|
bitrid |
|- ( ( R e. V /\ I e. Fin ) -> ( X e. B <-> X : I --> N ) ) |