| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmfielbas.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmfielbas.n |
⊢ 𝑁 = ( Base ‘ 𝑅 ) |
| 3 |
|
frlmfielbas.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
3
|
eleq2i |
⊢ ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( Base ‘ 𝐹 ) ) |
| 5 |
1 2
|
frlmfibas |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑁 ↑m 𝐼 ) = ( Base ‘ 𝐹 ) ) |
| 6 |
5
|
eleq2d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ↔ 𝑋 ∈ ( Base ‘ 𝐹 ) ) ) |
| 7 |
2
|
fvexi |
⊢ 𝑁 ∈ V |
| 8 |
7
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → 𝑁 ∈ V ) |
| 9 |
|
simpr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → 𝐼 ∈ Fin ) |
| 10 |
8 9
|
elmapd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝑁 ) ) |
| 11 |
6 10
|
bitr3d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑋 ∈ ( Base ‘ 𝐹 ) ↔ 𝑋 : 𝐼 ⟶ 𝑁 ) ) |
| 12 |
4 11
|
bitrid |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑋 ∈ 𝐵 ↔ 𝑋 : 𝐼 ⟶ 𝑁 ) ) |