Metamath Proof Explorer


Theorem frlmfielbas

Description: The vectors of a finite free module are the functions from I to N . (Contributed by SN, 31-Aug-2023)

Ref Expression
Hypotheses frlmfielbas.f F=RfreeLModI
frlmfielbas.n N=BaseR
frlmfielbas.b B=BaseF
Assertion frlmfielbas RVIFinXBX:IN

Proof

Step Hyp Ref Expression
1 frlmfielbas.f F=RfreeLModI
2 frlmfielbas.n N=BaseR
3 frlmfielbas.b B=BaseF
4 3 eleq2i XBXBaseF
5 1 2 frlmfibas RVIFinNI=BaseF
6 5 eleq2d RVIFinXNIXBaseF
7 2 fvexi NV
8 7 a1i RVIFinNV
9 simpr RVIFinIFin
10 8 9 elmapd RVIFinXNIX:IN
11 6 10 bitr3d RVIFinXBaseFX:IN
12 4 11 bitrid RVIFinXBX:IN