Step |
Hyp |
Ref |
Expression |
1 |
|
frlmsnic.w |
⊢ 𝑊 = ( 𝐾 freeLMod { 𝐼 } ) |
2 |
|
frlmsnic.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
|
snex |
⊢ { 𝐼 } ∈ V |
10 |
1
|
frlmlmod |
⊢ ( ( 𝐾 ∈ Ring ∧ { 𝐼 } ∈ V ) → 𝑊 ∈ LMod ) |
11 |
9 10
|
mpan2 |
⊢ ( 𝐾 ∈ Ring → 𝑊 ∈ LMod ) |
12 |
11
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝑊 ∈ LMod ) |
13 |
|
rlmlmod |
⊢ ( 𝐾 ∈ Ring → ( ringLMod ‘ 𝐾 ) ∈ LMod ) |
14 |
13
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( ringLMod ‘ 𝐾 ) ∈ LMod ) |
15 |
|
rlmsca |
⊢ ( 𝐾 ∈ Ring → 𝐾 = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐾 = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
17 |
1
|
frlmsca |
⊢ ( ( 𝐾 ∈ Ring ∧ { 𝐼 } ∈ V ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
18 |
9 17
|
mpan2 |
⊢ ( 𝐾 ∈ Ring → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
20 |
16 19
|
eqtr3d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) = ( Scalar ‘ 𝑊 ) ) |
21 |
|
rlmbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) |
22 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
23 |
|
rlmplusg |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ ( ringLMod ‘ 𝐾 ) ) |
24 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
25 |
12 24
|
syl |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝑊 ∈ Grp ) |
26 |
|
lmodgrp |
⊢ ( ( ringLMod ‘ 𝐾 ) ∈ LMod → ( ringLMod ‘ 𝐾 ) ∈ Grp ) |
27 |
13 26
|
syl |
⊢ ( 𝐾 ∈ Ring → ( ringLMod ‘ 𝐾 ) ∈ Grp ) |
28 |
27
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( ringLMod ‘ 𝐾 ) ∈ Grp ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
30 |
1 29 3
|
frlmbasf |
⊢ ( ( { 𝐼 } ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
31 |
9 30
|
mpan |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
33 |
|
snidg |
⊢ ( 𝐼 ∈ V → 𝐼 ∈ { 𝐼 } ) |
34 |
33
|
adantl |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐼 ∈ { 𝐼 } ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝐼 ∈ { 𝐼 } ) |
36 |
32 35
|
ffvelrnd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ‘ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
37 |
36 2
|
fmptd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝐾 ) ) |
38 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐾 ∈ Ring ) |
39 |
9
|
a1i |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → { 𝐼 } ∈ V ) |
40 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
41 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
42 |
34
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐼 ∈ { 𝐼 } ) |
43 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
44 |
1 3 38 39 40 41 42 43 22
|
frlmvplusgvalc |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) = ( ( 𝑥 ‘ 𝐼 ) ( +g ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) ) |
45 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
46 |
3 22
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
47 |
45 40 41 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
48 |
|
fveq1 |
⊢ ( 𝑡 = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) → ( 𝑡 ‘ 𝐼 ) = ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
49 |
|
fveq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ‘ 𝐼 ) = ( 𝑡 ‘ 𝐼 ) ) |
50 |
49
|
cbvmptv |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑡 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑡 ‘ 𝐼 ) ) |
51 |
2 50
|
eqtri |
⊢ 𝐹 = ( 𝑡 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑡 ‘ 𝐼 ) ) |
52 |
|
fvexd |
⊢ ( 𝑡 ∈ ( Base ‘ 𝑊 ) → ( 𝑡 ‘ 𝐼 ) ∈ V ) |
53 |
48 51 52
|
fvmpt3 |
⊢ ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
54 |
47 53
|
syl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
55 |
2
|
a1i |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐹 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
56 |
|
fvexd |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ‘ 𝐼 ) ∈ V ) |
57 |
55 56
|
fvmpt2d |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ‘ 𝐼 ) ) |
58 |
40 57
|
mpdan |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ‘ 𝐼 ) ) |
59 |
|
fveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ‘ 𝐼 ) = ( 𝑦 ‘ 𝐼 ) ) |
60 |
|
fvexd |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑥 ‘ 𝐼 ) ∈ V ) |
61 |
59 2 60
|
fvmpt3 |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
62 |
41 61
|
syl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
63 |
58 62
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝐼 ) ( +g ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) ) |
64 |
44 54 63
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝐹 ‘ 𝑦 ) ) ) |
65 |
3 21 22 23 25 28 37 64
|
isghmd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐾 ) ) ) |
66 |
9
|
a1i |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → { 𝐼 } ∈ V ) |
67 |
19
|
eqcomd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Scalar ‘ 𝑊 ) = 𝐾 ) |
68 |
67
|
fveq2d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐾 ) ) |
69 |
68
|
eleq2d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ) |
70 |
69
|
biimpa |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
71 |
70
|
adantrr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
72 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
73 |
34
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐼 ∈ { 𝐼 } ) |
74 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
75 |
1 3 29 66 71 72 73 4 74
|
frlmvscaval |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) = ( 𝑥 ( .r ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) ) |
76 |
|
rlmvsca |
⊢ ( .r ‘ 𝐾 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) |
77 |
76
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝑦 ‘ 𝐼 ) ) |
78 |
75 77
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝑦 ‘ 𝐼 ) ) ) |
79 |
|
fveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ‘ 𝐼 ) = ( 𝑢 ‘ 𝐼 ) ) |
80 |
79
|
cbvmptv |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑢 ‘ 𝐼 ) ) |
81 |
2 80
|
eqtri |
⊢ 𝐹 = ( 𝑢 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑢 ‘ 𝐼 ) ) |
82 |
|
fveq1 |
⊢ ( 𝑢 = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) → ( 𝑢 ‘ 𝐼 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
83 |
9
|
a1i |
⊢ ( 𝐼 ∈ V → { 𝐼 } ∈ V ) |
84 |
83 10
|
sylan2 |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝑊 ∈ LMod ) |
85 |
84
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
86 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
87 |
3 6 4 8
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
88 |
85 86 72 87
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
89 |
|
fvexd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ∈ V ) |
90 |
81 82 88 89
|
fvmptd3 |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
91 |
|
fvex |
⊢ ( 𝑥 ‘ 𝐼 ) ∈ V |
92 |
59 2 91
|
fvmpt3i |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
93 |
72 92
|
syl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
94 |
93
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝑦 ‘ 𝐼 ) ) ) |
95 |
78 90 94
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
96 |
3 4 5 6 7 8 12 14 20 65 95
|
islmhmd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐾 ) ) ) |
97 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝐼 ∈ V ) |
98 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
99 |
97 98
|
fsnd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → { 〈 𝐼 , 𝑦 〉 } : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
100 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝐾 ∈ Ring ) |
101 |
|
snfi |
⊢ { 𝐼 } ∈ Fin |
102 |
1 29 3
|
frlmfielbas |
⊢ ( ( 𝐾 ∈ Ring ∧ { 𝐼 } ∈ Fin ) → ( { 〈 𝐼 , 𝑦 〉 } ∈ ( Base ‘ 𝑊 ) ↔ { 〈 𝐼 , 𝑦 〉 } : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) ) |
103 |
100 101 102
|
sylancl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( { 〈 𝐼 , 𝑦 〉 } ∈ ( Base ‘ 𝑊 ) ↔ { 〈 𝐼 , 𝑦 〉 } : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) ) |
104 |
99 103
|
mpbird |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → { 〈 𝐼 , 𝑦 〉 } ∈ ( Base ‘ 𝑊 ) ) |
105 |
|
fveq1 |
⊢ ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } → ( 𝑥 ‘ 𝐼 ) = ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) ) |
106 |
105
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → ( 𝑥 ‘ 𝐼 ) = ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) ) |
107 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → 𝐼 ∈ V ) |
108 |
|
vex |
⊢ 𝑦 ∈ V |
109 |
|
fvsng |
⊢ ( ( 𝐼 ∈ V ∧ 𝑦 ∈ V ) → ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) = 𝑦 ) |
110 |
107 108 109
|
sylancl |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) = 𝑦 ) |
111 |
106 110
|
eqtr2d |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → 𝑦 = ( 𝑥 ‘ 𝐼 ) ) |
112 |
111
|
ex |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } → 𝑦 = ( 𝑥 ‘ 𝐼 ) ) ) |
113 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝐼 ∈ V ) |
114 |
32
|
adantrr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
115 |
114
|
ffnd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 Fn { 𝐼 } ) |
116 |
|
fnsnbt |
⊢ ( 𝐼 ∈ V → ( 𝑥 Fn { 𝐼 } ↔ 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) ) |
117 |
116
|
biimpd |
⊢ ( 𝐼 ∈ V → ( 𝑥 Fn { 𝐼 } → 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) ) |
118 |
113 115 117
|
sylc |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) |
119 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → 〈 𝐼 , 𝑦 〉 = 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 ) |
120 |
119
|
sneqd |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → { 〈 𝐼 , 𝑦 〉 } = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) |
121 |
120
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } ↔ 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) ) |
122 |
118 121
|
syl5ibrcom |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) ) |
123 |
112 122
|
impbid |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } ↔ 𝑦 = ( 𝑥 ‘ 𝐼 ) ) ) |
124 |
2 36 104 123
|
f1o2d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
125 |
21
|
a1i |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) |
126 |
125
|
f1oeq3d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝐾 ) ↔ 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) ) |
127 |
124 126
|
mpbid |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) |
128 |
|
eqid |
⊢ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) |
129 |
3 128
|
islmim |
⊢ ( 𝐹 ∈ ( 𝑊 LMIso ( ringLMod ‘ 𝐾 ) ) ↔ ( 𝐹 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐾 ) ) ∧ 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) ) |
130 |
96 127 129
|
sylanbrc |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 ∈ ( 𝑊 LMIso ( ringLMod ‘ 𝐾 ) ) ) |