| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmsnic.w |
⊢ 𝑊 = ( 𝐾 freeLMod { 𝐼 } ) |
| 2 |
|
frlmsnic.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 9 |
|
snex |
⊢ { 𝐼 } ∈ V |
| 10 |
1
|
frlmlmod |
⊢ ( ( 𝐾 ∈ Ring ∧ { 𝐼 } ∈ V ) → 𝑊 ∈ LMod ) |
| 11 |
9 10
|
mpan2 |
⊢ ( 𝐾 ∈ Ring → 𝑊 ∈ LMod ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝑊 ∈ LMod ) |
| 13 |
|
rlmlmod |
⊢ ( 𝐾 ∈ Ring → ( ringLMod ‘ 𝐾 ) ∈ LMod ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( ringLMod ‘ 𝐾 ) ∈ LMod ) |
| 15 |
|
rlmsca |
⊢ ( 𝐾 ∈ Ring → 𝐾 = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐾 = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 17 |
1
|
frlmsca |
⊢ ( ( 𝐾 ∈ Ring ∧ { 𝐼 } ∈ V ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
| 18 |
9 17
|
mpan2 |
⊢ ( 𝐾 ∈ Ring → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
| 20 |
16 19
|
eqtr3d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) = ( Scalar ‘ 𝑊 ) ) |
| 21 |
|
rlmbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) |
| 22 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 23 |
|
rlmplusg |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ ( ringLMod ‘ 𝐾 ) ) |
| 24 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 25 |
12 24
|
syl |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝑊 ∈ Grp ) |
| 26 |
|
lmodgrp |
⊢ ( ( ringLMod ‘ 𝐾 ) ∈ LMod → ( ringLMod ‘ 𝐾 ) ∈ Grp ) |
| 27 |
13 26
|
syl |
⊢ ( 𝐾 ∈ Ring → ( ringLMod ‘ 𝐾 ) ∈ Grp ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( ringLMod ‘ 𝐾 ) ∈ Grp ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 30 |
1 29 3
|
frlmbasf |
⊢ ( ( { 𝐼 } ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
| 31 |
9 30
|
mpan |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
| 33 |
|
snidg |
⊢ ( 𝐼 ∈ V → 𝐼 ∈ { 𝐼 } ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐼 ∈ { 𝐼 } ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝐼 ∈ { 𝐼 } ) |
| 36 |
32 35
|
ffvelcdmd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ‘ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
36 2
|
fmptd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 38 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐾 ∈ Ring ) |
| 39 |
9
|
a1i |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → { 𝐼 } ∈ V ) |
| 40 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 41 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 42 |
34
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐼 ∈ { 𝐼 } ) |
| 43 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 44 |
1 3 38 39 40 41 42 43 22
|
frlmvplusgvalc |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) = ( ( 𝑥 ‘ 𝐼 ) ( +g ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) ) |
| 45 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 46 |
3 22
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 47 |
45 40 41 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 48 |
|
fveq1 |
⊢ ( 𝑡 = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) → ( 𝑡 ‘ 𝐼 ) = ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
| 49 |
|
fveq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ‘ 𝐼 ) = ( 𝑡 ‘ 𝐼 ) ) |
| 50 |
49
|
cbvmptv |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑡 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑡 ‘ 𝐼 ) ) |
| 51 |
2 50
|
eqtri |
⊢ 𝐹 = ( 𝑡 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑡 ‘ 𝐼 ) ) |
| 52 |
|
fvexd |
⊢ ( 𝑡 ∈ ( Base ‘ 𝑊 ) → ( 𝑡 ‘ 𝐼 ) ∈ V ) |
| 53 |
48 51 52
|
fvmpt3 |
⊢ ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
| 54 |
47 53
|
syl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
| 55 |
2
|
a1i |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐹 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
| 56 |
|
fvexd |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ‘ 𝐼 ) ∈ V ) |
| 57 |
55 56
|
fvmpt2d |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ‘ 𝐼 ) ) |
| 58 |
40 57
|
mpdan |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ‘ 𝐼 ) ) |
| 59 |
|
fveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ‘ 𝐼 ) = ( 𝑦 ‘ 𝐼 ) ) |
| 60 |
|
fvexd |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑥 ‘ 𝐼 ) ∈ V ) |
| 61 |
59 2 60
|
fvmpt3 |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
| 62 |
41 61
|
syl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
| 63 |
58 62
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝐼 ) ( +g ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) ) |
| 64 |
44 54 63
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 65 |
3 21 22 23 25 28 37 64
|
isghmd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐾 ) ) ) |
| 66 |
9
|
a1i |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → { 𝐼 } ∈ V ) |
| 67 |
19
|
eqcomd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Scalar ‘ 𝑊 ) = 𝐾 ) |
| 68 |
67
|
fveq2d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐾 ) ) |
| 69 |
68
|
eleq2d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ) |
| 70 |
69
|
biimpa |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
| 71 |
70
|
adantrr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
| 72 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 73 |
34
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐼 ∈ { 𝐼 } ) |
| 74 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 75 |
1 3 29 66 71 72 73 4 74
|
frlmvscaval |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) = ( 𝑥 ( .r ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) ) |
| 76 |
|
rlmvsca |
⊢ ( .r ‘ 𝐾 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) |
| 77 |
76
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) ( 𝑦 ‘ 𝐼 ) ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝑦 ‘ 𝐼 ) ) |
| 78 |
75 77
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝑦 ‘ 𝐼 ) ) ) |
| 79 |
|
fveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ‘ 𝐼 ) = ( 𝑢 ‘ 𝐼 ) ) |
| 80 |
79
|
cbvmptv |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑢 ‘ 𝐼 ) ) |
| 81 |
2 80
|
eqtri |
⊢ 𝐹 = ( 𝑢 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑢 ‘ 𝐼 ) ) |
| 82 |
|
fveq1 |
⊢ ( 𝑢 = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) → ( 𝑢 ‘ 𝐼 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
| 83 |
9
|
a1i |
⊢ ( 𝐼 ∈ V → { 𝐼 } ∈ V ) |
| 84 |
83 10
|
sylan2 |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝑊 ∈ LMod ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 86 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 87 |
3 6 4 8 85 86 72
|
lmodvscld |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 88 |
|
fvexd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ∈ V ) |
| 89 |
81 82 87 88
|
fvmptd3 |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ‘ 𝐼 ) ) |
| 90 |
|
fvex |
⊢ ( 𝑥 ‘ 𝐼 ) ∈ V |
| 91 |
59 2 90
|
fvmpt3i |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
| 92 |
72 91
|
syl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 𝐼 ) ) |
| 93 |
92
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝑦 ‘ 𝐼 ) ) ) |
| 94 |
78 89 93
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 95 |
3 4 5 6 7 8 12 14 20 65 94
|
islmhmd |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐾 ) ) ) |
| 96 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝐼 ∈ V ) |
| 97 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
| 98 |
96 97
|
fsnd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → { 〈 𝐼 , 𝑦 〉 } : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
| 99 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝐾 ∈ Ring ) |
| 100 |
|
snfi |
⊢ { 𝐼 } ∈ Fin |
| 101 |
1 29 3
|
frlmfielbas |
⊢ ( ( 𝐾 ∈ Ring ∧ { 𝐼 } ∈ Fin ) → ( { 〈 𝐼 , 𝑦 〉 } ∈ ( Base ‘ 𝑊 ) ↔ { 〈 𝐼 , 𝑦 〉 } : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) ) |
| 102 |
99 100 101
|
sylancl |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( { 〈 𝐼 , 𝑦 〉 } ∈ ( Base ‘ 𝑊 ) ↔ { 〈 𝐼 , 𝑦 〉 } : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) ) |
| 103 |
98 102
|
mpbird |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → { 〈 𝐼 , 𝑦 〉 } ∈ ( Base ‘ 𝑊 ) ) |
| 104 |
|
fveq1 |
⊢ ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } → ( 𝑥 ‘ 𝐼 ) = ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) ) |
| 105 |
104
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → ( 𝑥 ‘ 𝐼 ) = ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) ) |
| 106 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → 𝐼 ∈ V ) |
| 107 |
|
vex |
⊢ 𝑦 ∈ V |
| 108 |
|
fvsng |
⊢ ( ( 𝐼 ∈ V ∧ 𝑦 ∈ V ) → ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) = 𝑦 ) |
| 109 |
106 107 108
|
sylancl |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → ( { 〈 𝐼 , 𝑦 〉 } ‘ 𝐼 ) = 𝑦 ) |
| 110 |
105 109
|
eqtr2d |
⊢ ( ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) → 𝑦 = ( 𝑥 ‘ 𝐼 ) ) |
| 111 |
110
|
ex |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } → 𝑦 = ( 𝑥 ‘ 𝐼 ) ) ) |
| 112 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝐼 ∈ V ) |
| 113 |
32
|
adantrr |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 : { 𝐼 } ⟶ ( Base ‘ 𝐾 ) ) |
| 114 |
113
|
ffnd |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 Fn { 𝐼 } ) |
| 115 |
|
fnsnbg |
⊢ ( 𝐼 ∈ V → ( 𝑥 Fn { 𝐼 } ↔ 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) ) |
| 116 |
115
|
biimpd |
⊢ ( 𝐼 ∈ V → ( 𝑥 Fn { 𝐼 } → 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) ) |
| 117 |
112 114 116
|
sylc |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) |
| 118 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → 〈 𝐼 , 𝑦 〉 = 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 ) |
| 119 |
118
|
sneqd |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → { 〈 𝐼 , 𝑦 〉 } = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) |
| 120 |
119
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } ↔ 𝑥 = { 〈 𝐼 , ( 𝑥 ‘ 𝐼 ) 〉 } ) ) |
| 121 |
117 120
|
syl5ibrcom |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑦 = ( 𝑥 ‘ 𝐼 ) → 𝑥 = { 〈 𝐼 , 𝑦 〉 } ) ) |
| 122 |
111 121
|
impbid |
⊢ ( ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 = { 〈 𝐼 , 𝑦 〉 } ↔ 𝑦 = ( 𝑥 ‘ 𝐼 ) ) ) |
| 123 |
2 36 103 122
|
f1o2d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 124 |
21
|
a1i |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 125 |
124
|
f1oeq3d |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → ( 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝐾 ) ↔ 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) ) |
| 126 |
123 125
|
mpbid |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 127 |
|
eqid |
⊢ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) |
| 128 |
3 127
|
islmim |
⊢ ( 𝐹 ∈ ( 𝑊 LMIso ( ringLMod ‘ 𝐾 ) ) ↔ ( 𝐹 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐾 ) ) ∧ 𝐹 : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) ) |
| 129 |
95 126 128
|
sylanbrc |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐼 ∈ V ) → 𝐹 ∈ ( 𝑊 LMIso ( ringLMod ‘ 𝐾 ) ) ) |