Metamath Proof Explorer


Theorem frlmvplusgvalc

Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses frlmvplusgvalc.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
frlmvplusgvalc.b 𝐵 = ( Base ‘ 𝐹 )
frlmvplusgvalc.r ( 𝜑𝑅𝑉 )
frlmvplusgvalc.i ( 𝜑𝐼𝑊 )
frlmvplusgvalc.x ( 𝜑𝑋𝐵 )
frlmvplusgvalc.y ( 𝜑𝑌𝐵 )
frlmvplusgvalc.j ( 𝜑𝐽𝐼 )
frlmvplusgvalc.a + = ( +g𝑅 )
frlmvplusgvalc.p = ( +g𝐹 )
Assertion frlmvplusgvalc ( 𝜑 → ( ( 𝑋 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋𝐽 ) + ( 𝑌𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 frlmvplusgvalc.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
2 frlmvplusgvalc.b 𝐵 = ( Base ‘ 𝐹 )
3 frlmvplusgvalc.r ( 𝜑𝑅𝑉 )
4 frlmvplusgvalc.i ( 𝜑𝐼𝑊 )
5 frlmvplusgvalc.x ( 𝜑𝑋𝐵 )
6 frlmvplusgvalc.y ( 𝜑𝑌𝐵 )
7 frlmvplusgvalc.j ( 𝜑𝐽𝐼 )
8 frlmvplusgvalc.a + = ( +g𝑅 )
9 frlmvplusgvalc.p = ( +g𝐹 )
10 1 2 3 4 5 6 8 9 frlmplusgval ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑋f + 𝑌 ) )
11 10 fveq1d ( 𝜑 → ( ( 𝑋 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋f + 𝑌 ) ‘ 𝐽 ) )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 1 12 2 frlmbasmap ( ( 𝐼𝑊𝑋𝐵 ) → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) )
14 4 5 13 syl2anc ( 𝜑𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) )
15 fvexd ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V )
16 15 4 elmapd ( 𝜑 → ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) )
17 14 16 mpbid ( 𝜑𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
18 17 ffnd ( 𝜑𝑋 Fn 𝐼 )
19 1 12 2 frlmbasmap ( ( 𝐼𝑊𝑌𝐵 ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) )
20 4 6 19 syl2anc ( 𝜑𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) )
21 15 4 elmapd ( 𝜑 → ( 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ 𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) )
22 20 21 mpbid ( 𝜑𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
23 22 ffnd ( 𝜑𝑌 Fn 𝐼 )
24 fnfvof ( ( ( 𝑋 Fn 𝐼𝑌 Fn 𝐼 ) ∧ ( 𝐼𝑊𝐽𝐼 ) ) → ( ( 𝑋f + 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋𝐽 ) + ( 𝑌𝐽 ) ) )
25 18 23 4 7 24 syl22anc ( 𝜑 → ( ( 𝑋f + 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋𝐽 ) + ( 𝑌𝐽 ) ) )
26 11 25 eqtrd ( 𝜑 → ( ( 𝑋 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋𝐽 ) + ( 𝑌𝐽 ) ) )