Metamath Proof Explorer


Theorem frlmvplusgvalc

Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses frlmvplusgvalc.f F=RfreeLModI
frlmvplusgvalc.b B=BaseF
frlmvplusgvalc.r φRV
frlmvplusgvalc.i φIW
frlmvplusgvalc.x φXB
frlmvplusgvalc.y φYB
frlmvplusgvalc.j φJI
frlmvplusgvalc.a +˙=+R
frlmvplusgvalc.p ˙=+F
Assertion frlmvplusgvalc φX˙YJ=XJ+˙YJ

Proof

Step Hyp Ref Expression
1 frlmvplusgvalc.f F=RfreeLModI
2 frlmvplusgvalc.b B=BaseF
3 frlmvplusgvalc.r φRV
4 frlmvplusgvalc.i φIW
5 frlmvplusgvalc.x φXB
6 frlmvplusgvalc.y φYB
7 frlmvplusgvalc.j φJI
8 frlmvplusgvalc.a +˙=+R
9 frlmvplusgvalc.p ˙=+F
10 1 2 3 4 5 6 8 9 frlmplusgval φX˙Y=X+˙fY
11 10 fveq1d φX˙YJ=X+˙fYJ
12 eqid BaseR=BaseR
13 1 12 2 frlmbasmap IWXBXBaseRI
14 4 5 13 syl2anc φXBaseRI
15 fvexd φBaseRV
16 15 4 elmapd φXBaseRIX:IBaseR
17 14 16 mpbid φX:IBaseR
18 17 ffnd φXFnI
19 1 12 2 frlmbasmap IWYBYBaseRI
20 4 6 19 syl2anc φYBaseRI
21 15 4 elmapd φYBaseRIY:IBaseR
22 20 21 mpbid φY:IBaseR
23 22 ffnd φYFnI
24 fnfvof XFnIYFnIIWJIX+˙fYJ=XJ+˙YJ
25 18 23 4 7 24 syl22anc φX+˙fYJ=XJ+˙YJ
26 11 25 eqtrd φX˙YJ=XJ+˙YJ