Metamath Proof Explorer


Theorem frlmvplusgvalc

Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses frlmvplusgvalc.f F = R freeLMod I
frlmvplusgvalc.b B = Base F
frlmvplusgvalc.r φ R V
frlmvplusgvalc.i φ I W
frlmvplusgvalc.x φ X B
frlmvplusgvalc.y φ Y B
frlmvplusgvalc.j φ J I
frlmvplusgvalc.a + ˙ = + R
frlmvplusgvalc.p ˙ = + F
Assertion frlmvplusgvalc φ X ˙ Y J = X J + ˙ Y J

Proof

Step Hyp Ref Expression
1 frlmvplusgvalc.f F = R freeLMod I
2 frlmvplusgvalc.b B = Base F
3 frlmvplusgvalc.r φ R V
4 frlmvplusgvalc.i φ I W
5 frlmvplusgvalc.x φ X B
6 frlmvplusgvalc.y φ Y B
7 frlmvplusgvalc.j φ J I
8 frlmvplusgvalc.a + ˙ = + R
9 frlmvplusgvalc.p ˙ = + F
10 1 2 3 4 5 6 8 9 frlmplusgval φ X ˙ Y = X + ˙ f Y
11 10 fveq1d φ X ˙ Y J = X + ˙ f Y J
12 eqid Base R = Base R
13 1 12 2 frlmbasmap I W X B X Base R I
14 4 5 13 syl2anc φ X Base R I
15 fvexd φ Base R V
16 15 4 elmapd φ X Base R I X : I Base R
17 14 16 mpbid φ X : I Base R
18 17 ffnd φ X Fn I
19 1 12 2 frlmbasmap I W Y B Y Base R I
20 4 6 19 syl2anc φ Y Base R I
21 15 4 elmapd φ Y Base R I Y : I Base R
22 20 21 mpbid φ Y : I Base R
23 22 ffnd φ Y Fn I
24 fnfvof X Fn I Y Fn I I W J I X + ˙ f Y J = X J + ˙ Y J
25 18 23 4 7 24 syl22anc φ X + ˙ f Y J = X J + ˙ Y J
26 11 25 eqtrd φ X ˙ Y J = X J + ˙ Y J