| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvcn0.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
| 2 |
|
uvcn0.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
| 3 |
|
uvcn0.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 4 |
|
uvcn0.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
| 5 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 7 |
5 6
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 9 |
|
simp1 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝑅 ∈ NzRing ) |
| 10 |
|
simp2 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 11 |
|
simp3 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝐽 ∈ 𝐼 ) |
| 12 |
1 9 10 11 5
|
uvcvv1 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 ) = ( 1r ‘ 𝑅 ) ) |
| 13 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 15 |
2 6 14 10 11
|
frlm0vald |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( ( 0g ‘ 𝑌 ) ‘ 𝐽 ) = ( 0g ‘ 𝑅 ) ) |
| 16 |
8 12 15
|
3netr4d |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 ) ≠ ( ( 0g ‘ 𝑌 ) ‘ 𝐽 ) ) |
| 17 |
|
fveq1 |
⊢ ( ( 𝑈 ‘ 𝐽 ) = ( 0g ‘ 𝑌 ) → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 ) = ( ( 0g ‘ 𝑌 ) ‘ 𝐽 ) ) |
| 18 |
17
|
necon3i |
⊢ ( ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 ) ≠ ( ( 0g ‘ 𝑌 ) ‘ 𝐽 ) → ( 𝑈 ‘ 𝐽 ) ≠ ( 0g ‘ 𝑌 ) ) |
| 19 |
16 18
|
syl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) ≠ ( 0g ‘ 𝑌 ) ) |
| 20 |
4
|
a1i |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 0 = ( 0g ‘ 𝑌 ) ) |
| 21 |
19 20
|
neeqtrrd |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) ≠ 0 ) |