Step |
Hyp |
Ref |
Expression |
1 |
|
prjspnfv01.f |
|
2 |
|
prjspnfv01.b |
|
3 |
|
prjspnfv01.w |
|
4 |
|
prjspnfv01.t |
|
5 |
|
prjspnfv01.0 |
|
6 |
|
prjspnfv01.1 |
|
7 |
|
prjspnfv01.i |
|
8 |
|
prjspnfv01.k |
|
9 |
|
prjspnfv01.n |
|
10 |
|
prjspnfv01.x |
|
11 |
|
fveq1 |
|
12 |
11
|
eqeq1d |
|
13 |
|
id |
|
14 |
11
|
fveq2d |
|
15 |
14 13
|
oveq12d |
|
16 |
12 13 15
|
ifbieq12d |
|
17 |
|
ovexd |
|
18 |
10 17
|
ifexd |
|
19 |
1 16 10 18
|
fvmptd3 |
|
20 |
19
|
fveq1d |
|
21 |
|
iffv |
|
22 |
21
|
a1i |
|
23 |
|
simpr |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
ovexd |
|
27 |
|
ovexd |
|
28 |
10 2
|
eleqtrdi |
|
29 |
28
|
eldifad |
|
30 |
3 25 24
|
frlmbasf |
|
31 |
27 29 30
|
syl2anc |
|
32 |
|
0elfz |
|
33 |
9 32
|
syl |
|
34 |
31 33
|
ffvelrnd |
|
35 |
|
neqne |
|
36 |
25 5 7
|
drnginvrcl |
|
37 |
8 34 35 36
|
syl2an3an |
|
38 |
29
|
adantr |
|
39 |
33
|
adantr |
|
40 |
|
eqid |
|
41 |
3 24 25 26 37 38 39 4 40
|
frlmvscaval |
|
42 |
25 5 40 6 7
|
drnginvrl |
|
43 |
8 34 35 42
|
syl2an3an |
|
44 |
41 43
|
eqtrd |
|
45 |
23 44
|
ifeq12da |
|
46 |
20 22 45
|
3eqtrd |
|