Metamath Proof Explorer


Theorem prjspnfv01

Description: Any vector is equivalent to a vector whose zeroth coordinate is .0. or .1. (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023)

Ref Expression
Hypotheses prjspnfv01.f F = b B if b 0 = 0 ˙ b I b 0 · ˙ b
prjspnfv01.b B = Base W 0 W
prjspnfv01.w W = K freeLMod 0 N
prjspnfv01.t · ˙ = W
prjspnfv01.0 0 ˙ = 0 K
prjspnfv01.1 1 ˙ = 1 K
prjspnfv01.i I = inv r K
prjspnfv01.k φ K DivRing
prjspnfv01.n φ N 0
prjspnfv01.x φ X B
Assertion prjspnfv01 φ F X 0 = if X 0 = 0 ˙ 0 ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 prjspnfv01.f F = b B if b 0 = 0 ˙ b I b 0 · ˙ b
2 prjspnfv01.b B = Base W 0 W
3 prjspnfv01.w W = K freeLMod 0 N
4 prjspnfv01.t · ˙ = W
5 prjspnfv01.0 0 ˙ = 0 K
6 prjspnfv01.1 1 ˙ = 1 K
7 prjspnfv01.i I = inv r K
8 prjspnfv01.k φ K DivRing
9 prjspnfv01.n φ N 0
10 prjspnfv01.x φ X B
11 fveq1 b = X b 0 = X 0
12 11 eqeq1d b = X b 0 = 0 ˙ X 0 = 0 ˙
13 id b = X b = X
14 11 fveq2d b = X I b 0 = I X 0
15 14 13 oveq12d b = X I b 0 · ˙ b = I X 0 · ˙ X
16 12 13 15 ifbieq12d b = X if b 0 = 0 ˙ b I b 0 · ˙ b = if X 0 = 0 ˙ X I X 0 · ˙ X
17 ovexd φ I X 0 · ˙ X V
18 10 17 ifexd φ if X 0 = 0 ˙ X I X 0 · ˙ X V
19 1 16 10 18 fvmptd3 φ F X = if X 0 = 0 ˙ X I X 0 · ˙ X
20 19 fveq1d φ F X 0 = if X 0 = 0 ˙ X I X 0 · ˙ X 0
21 iffv if X 0 = 0 ˙ X I X 0 · ˙ X 0 = if X 0 = 0 ˙ X 0 I X 0 · ˙ X 0
22 21 a1i φ if X 0 = 0 ˙ X I X 0 · ˙ X 0 = if X 0 = 0 ˙ X 0 I X 0 · ˙ X 0
23 simpr φ X 0 = 0 ˙ X 0 = 0 ˙
24 eqid Base W = Base W
25 eqid Base K = Base K
26 ovexd φ ¬ X 0 = 0 ˙ 0 N V
27 ovexd φ 0 N V
28 10 2 eleqtrdi φ X Base W 0 W
29 28 eldifad φ X Base W
30 3 25 24 frlmbasf 0 N V X Base W X : 0 N Base K
31 27 29 30 syl2anc φ X : 0 N Base K
32 0elfz N 0 0 0 N
33 9 32 syl φ 0 0 N
34 31 33 ffvelrnd φ X 0 Base K
35 neqne ¬ X 0 = 0 ˙ X 0 0 ˙
36 25 5 7 drnginvrcl K DivRing X 0 Base K X 0 0 ˙ I X 0 Base K
37 8 34 35 36 syl2an3an φ ¬ X 0 = 0 ˙ I X 0 Base K
38 29 adantr φ ¬ X 0 = 0 ˙ X Base W
39 33 adantr φ ¬ X 0 = 0 ˙ 0 0 N
40 eqid K = K
41 3 24 25 26 37 38 39 4 40 frlmvscaval φ ¬ X 0 = 0 ˙ I X 0 · ˙ X 0 = I X 0 K X 0
42 25 5 40 6 7 drnginvrl K DivRing X 0 Base K X 0 0 ˙ I X 0 K X 0 = 1 ˙
43 8 34 35 42 syl2an3an φ ¬ X 0 = 0 ˙ I X 0 K X 0 = 1 ˙
44 41 43 eqtrd φ ¬ X 0 = 0 ˙ I X 0 · ˙ X 0 = 1 ˙
45 23 44 ifeq12da φ if X 0 = 0 ˙ X 0 I X 0 · ˙ X 0 = if X 0 = 0 ˙ 0 ˙ 1 ˙
46 20 22 45 3eqtrd φ F X 0 = if X 0 = 0 ˙ 0 ˙ 1 ˙