Metamath Proof Explorer


Theorem prjspner01

Description: Any vector is equivalent to a vector whose zeroth coordinate is .0. or .1. (proof of the equivalence). (Contributed by SN, 13-Aug-2023)

Ref Expression
Hypotheses prjspner01.e ˙ = x y | x B y B l S x = l · ˙ y
prjspner01.f F = b B if b 0 = 0 ˙ b I b 0 · ˙ b
prjspner01.b B = Base W 0 W
prjspner01.w W = K freeLMod 0 N
prjspner01.t · ˙ = W
prjspner01.s S = Base K
prjspner01.0 0 ˙ = 0 K
prjspner01.i I = inv r K
prjspner01.k φ K DivRing
prjspner01.n φ N 0
prjspner01.x φ X B
Assertion prjspner01 φ X ˙ F X

Proof

Step Hyp Ref Expression
1 prjspner01.e ˙ = x y | x B y B l S x = l · ˙ y
2 prjspner01.f F = b B if b 0 = 0 ˙ b I b 0 · ˙ b
3 prjspner01.b B = Base W 0 W
4 prjspner01.w W = K freeLMod 0 N
5 prjspner01.t · ˙ = W
6 prjspner01.s S = Base K
7 prjspner01.0 0 ˙ = 0 K
8 prjspner01.i I = inv r K
9 prjspner01.k φ K DivRing
10 prjspner01.n φ N 0
11 prjspner01.x φ X B
12 1 4 3 6 5 9 prjspner φ ˙ Er B
13 12 11 erref φ X ˙ X
14 13 adantr φ X 0 = 0 ˙ X ˙ X
15 12 adantr φ ¬ X 0 = 0 ˙ ˙ Er B
16 9 adantr φ ¬ X 0 = 0 ˙ K DivRing
17 11 adantr φ ¬ X 0 = 0 ˙ X B
18 ovexd φ 0 N V
19 11 3 eleqtrdi φ X Base W 0 W
20 19 eldifad φ X Base W
21 eqid Base W = Base W
22 4 6 21 frlmbasf 0 N V X Base W X : 0 N S
23 18 20 22 syl2anc φ X : 0 N S
24 0elfz N 0 0 0 N
25 10 24 syl φ 0 0 N
26 23 25 ffvelrnd φ X 0 S
27 neqne ¬ X 0 = 0 ˙ X 0 0 ˙
28 6 7 8 drnginvrcl K DivRing X 0 S X 0 0 ˙ I X 0 S
29 9 26 27 28 syl2an3an φ ¬ X 0 = 0 ˙ I X 0 S
30 6 7 8 drnginvrn0 K DivRing X 0 S X 0 0 ˙ I X 0 0 ˙
31 9 26 27 30 syl2an3an φ ¬ X 0 = 0 ˙ I X 0 0 ˙
32 1 4 3 6 5 7 16 17 29 31 prjspnvs φ ¬ X 0 = 0 ˙ I X 0 · ˙ X ˙ X
33 15 32 ersym φ ¬ X 0 = 0 ˙ X ˙ I X 0 · ˙ X
34 14 33 ifpimpda φ if- X 0 = 0 ˙ X ˙ X X ˙ I X 0 · ˙ X
35 brif2 X ˙ if X 0 = 0 ˙ X I X 0 · ˙ X if- X 0 = 0 ˙ X ˙ X X ˙ I X 0 · ˙ X
36 34 35 sylibr φ X ˙ if X 0 = 0 ˙ X I X 0 · ˙ X
37 fveq1 b = X b 0 = X 0
38 37 eqeq1d b = X b 0 = 0 ˙ X 0 = 0 ˙
39 id b = X b = X
40 37 fveq2d b = X I b 0 = I X 0
41 40 39 oveq12d b = X I b 0 · ˙ b = I X 0 · ˙ X
42 38 39 41 ifbieq12d b = X if b 0 = 0 ˙ b I b 0 · ˙ b = if X 0 = 0 ˙ X I X 0 · ˙ X
43 ovexd φ I X 0 · ˙ X V
44 11 43 ifexd φ if X 0 = 0 ˙ X I X 0 · ˙ X V
45 2 42 11 44 fvmptd3 φ F X = if X 0 = 0 ˙ X I X 0 · ˙ X
46 36 45 breqtrrd φ X ˙ F X