Metamath Proof Explorer


Theorem prjspner01

Description: Any vector is equivalent to a vector whose zeroth coordinate is .0. or .1. (proof of the equivalence). (Contributed by SN, 13-Aug-2023)

Ref Expression
Hypotheses prjspner01.e ˙=xy|xByBlSx=l·˙y
prjspner01.f F=bBifb0=0˙bIb0·˙b
prjspner01.b B=BaseW0W
prjspner01.w W=KfreeLMod0N
prjspner01.t ·˙=W
prjspner01.s S=BaseK
prjspner01.0 0˙=0K
prjspner01.i I=invrK
prjspner01.k φKDivRing
prjspner01.n φN0
prjspner01.x φXB
Assertion prjspner01 φX˙FX

Proof

Step Hyp Ref Expression
1 prjspner01.e ˙=xy|xByBlSx=l·˙y
2 prjspner01.f F=bBifb0=0˙bIb0·˙b
3 prjspner01.b B=BaseW0W
4 prjspner01.w W=KfreeLMod0N
5 prjspner01.t ·˙=W
6 prjspner01.s S=BaseK
7 prjspner01.0 0˙=0K
8 prjspner01.i I=invrK
9 prjspner01.k φKDivRing
10 prjspner01.n φN0
11 prjspner01.x φXB
12 1 4 3 6 5 9 prjspner φ˙ErB
13 12 11 erref φX˙X
14 13 adantr φX0=0˙X˙X
15 12 adantr φ¬X0=0˙˙ErB
16 9 adantr φ¬X0=0˙KDivRing
17 11 adantr φ¬X0=0˙XB
18 ovexd φ0NV
19 11 3 eleqtrdi φXBaseW0W
20 19 eldifad φXBaseW
21 eqid BaseW=BaseW
22 4 6 21 frlmbasf 0NVXBaseWX:0NS
23 18 20 22 syl2anc φX:0NS
24 0elfz N000N
25 10 24 syl φ00N
26 23 25 ffvelcdmd φX0S
27 neqne ¬X0=0˙X00˙
28 6 7 8 drnginvrcl KDivRingX0SX00˙IX0S
29 9 26 27 28 syl2an3an φ¬X0=0˙IX0S
30 6 7 8 drnginvrn0 KDivRingX0SX00˙IX00˙
31 9 26 27 30 syl2an3an φ¬X0=0˙IX00˙
32 1 4 3 6 5 7 16 17 29 31 prjspnvs φ¬X0=0˙IX0·˙X˙X
33 15 32 ersym φ¬X0=0˙X˙IX0·˙X
34 14 33 ifpimpda φif-X0=0˙X˙XX˙IX0·˙X
35 brif2 X˙ifX0=0˙XIX0·˙Xif-X0=0˙X˙XX˙IX0·˙X
36 34 35 sylibr φX˙ifX0=0˙XIX0·˙X
37 fveq1 b=Xb0=X0
38 37 eqeq1d b=Xb0=0˙X0=0˙
39 id b=Xb=X
40 37 fveq2d b=XIb0=IX0
41 40 39 oveq12d b=XIb0·˙b=IX0·˙X
42 38 39 41 ifbieq12d b=Xifb0=0˙bIb0·˙b=ifX0=0˙XIX0·˙X
43 ovexd φIX0·˙XV
44 11 43 ifexd φifX0=0˙XIX0·˙XV
45 2 42 11 44 fvmptd3 φFX=ifX0=0˙XIX0·˙X
46 36 45 breqtrrd φX˙FX