Step |
Hyp |
Ref |
Expression |
1 |
|
prjspner01.e |
|
2 |
|
prjspner01.f |
|
3 |
|
prjspner01.b |
|
4 |
|
prjspner01.w |
|
5 |
|
prjspner01.t |
|
6 |
|
prjspner01.s |
|
7 |
|
prjspner01.0 |
|
8 |
|
prjspner01.i |
|
9 |
|
prjspner01.k |
|
10 |
|
prjspner01.n |
|
11 |
|
prjspner01.x |
|
12 |
1 4 3 6 5 9
|
prjspner |
|
13 |
12 11
|
erref |
|
14 |
13
|
adantr |
|
15 |
12
|
adantr |
|
16 |
9
|
adantr |
|
17 |
11
|
adantr |
|
18 |
|
ovexd |
|
19 |
11 3
|
eleqtrdi |
|
20 |
19
|
eldifad |
|
21 |
|
eqid |
|
22 |
4 6 21
|
frlmbasf |
|
23 |
18 20 22
|
syl2anc |
|
24 |
|
0elfz |
|
25 |
10 24
|
syl |
|
26 |
23 25
|
ffvelrnd |
|
27 |
|
neqne |
|
28 |
6 7 8
|
drnginvrcl |
|
29 |
9 26 27 28
|
syl2an3an |
|
30 |
6 7 8
|
drnginvrn0 |
|
31 |
9 26 27 30
|
syl2an3an |
|
32 |
1 4 3 6 5 7 16 17 29 31
|
prjspnvs |
|
33 |
15 32
|
ersym |
|
34 |
14 33
|
ifpimpda |
|
35 |
|
brif2 |
|
36 |
34 35
|
sylibr |
|
37 |
|
fveq1 |
|
38 |
37
|
eqeq1d |
|
39 |
|
id |
|
40 |
37
|
fveq2d |
|
41 |
40 39
|
oveq12d |
|
42 |
38 39 41
|
ifbieq12d |
|
43 |
|
ovexd |
|
44 |
11 43
|
ifexd |
|
45 |
2 42 11 44
|
fvmptd3 |
|
46 |
36 45
|
breqtrrd |
|