Step |
Hyp |
Ref |
Expression |
1 |
|
prjspner01.e |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
prjspner01.f |
⊢ 𝐹 = ( 𝑏 ∈ 𝐵 ↦ if ( ( 𝑏 ‘ 0 ) = 0 , 𝑏 , ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) ) ) |
3 |
|
prjspner01.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
4 |
|
prjspner01.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) |
5 |
|
prjspner01.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
prjspner01.s |
⊢ 𝑆 = ( Base ‘ 𝐾 ) |
7 |
|
prjspner01.0 |
⊢ 0 = ( 0g ‘ 𝐾 ) |
8 |
|
prjspner01.i |
⊢ 𝐼 = ( invr ‘ 𝐾 ) |
9 |
|
prjspner01.k |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
10 |
|
prjspner01.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
prjspner01.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
12 |
1 4 3 6 5 9
|
prjspner |
⊢ ( 𝜑 → ∼ Er 𝐵 ) |
13 |
12 11
|
erref |
⊢ ( 𝜑 → 𝑋 ∼ 𝑋 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 0 ) = 0 ) → 𝑋 ∼ 𝑋 ) |
15 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ∼ Er 𝐵 ) |
16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → 𝐾 ∈ DivRing ) |
17 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → 𝑋 ∈ 𝐵 ) |
18 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ V ) |
19 |
11 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
20 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
22 |
4 6 21
|
frlmbasf |
⊢ ( ( ( 0 ... 𝑁 ) ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝑆 ) |
23 |
18 20 22
|
syl2anc |
⊢ ( 𝜑 → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝑆 ) |
24 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
25 |
10 24
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
26 |
23 25
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑋 ‘ 0 ) ∈ 𝑆 ) |
27 |
|
neqne |
⊢ ( ¬ ( 𝑋 ‘ 0 ) = 0 → ( 𝑋 ‘ 0 ) ≠ 0 ) |
28 |
6 7 8
|
drnginvrcl |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑋 ‘ 0 ) ∈ 𝑆 ∧ ( 𝑋 ‘ 0 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ∈ 𝑆 ) |
29 |
9 26 27 28
|
syl2an3an |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ∈ 𝑆 ) |
30 |
6 7 8
|
drnginvrn0 |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑋 ‘ 0 ) ∈ 𝑆 ∧ ( 𝑋 ‘ 0 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ≠ 0 ) |
31 |
9 26 27 30
|
syl2an3an |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ≠ 0 ) |
32 |
1 4 3 6 5 7 16 17 29 31
|
prjspnvs |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ∼ 𝑋 ) |
33 |
15 32
|
ersym |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → 𝑋 ∼ ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) |
34 |
14 33
|
ifpimpda |
⊢ ( 𝜑 → if- ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 ∼ 𝑋 , 𝑋 ∼ ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
35 |
|
brif2 |
⊢ ( 𝑋 ∼ if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ↔ if- ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 ∼ 𝑋 , 𝑋 ∼ ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
36 |
34 35
|
sylibr |
⊢ ( 𝜑 → 𝑋 ∼ if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
37 |
|
fveq1 |
⊢ ( 𝑏 = 𝑋 → ( 𝑏 ‘ 0 ) = ( 𝑋 ‘ 0 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝑏 ‘ 0 ) = 0 ↔ ( 𝑋 ‘ 0 ) = 0 ) ) |
39 |
|
id |
⊢ ( 𝑏 = 𝑋 → 𝑏 = 𝑋 ) |
40 |
37
|
fveq2d |
⊢ ( 𝑏 = 𝑋 → ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ) |
41 |
40 39
|
oveq12d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) = ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) |
42 |
38 39 41
|
ifbieq12d |
⊢ ( 𝑏 = 𝑋 → if ( ( 𝑏 ‘ 0 ) = 0 , 𝑏 , ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) ) = if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
43 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ∈ V ) |
44 |
11 43
|
ifexd |
⊢ ( 𝜑 → if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ∈ V ) |
45 |
2 42 11 44
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
46 |
36 45
|
breqtrrd |
⊢ ( 𝜑 → 𝑋 ∼ ( 𝐹 ‘ 𝑋 ) ) |