| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspner01.e | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝑆 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspner01.f | ⊢ 𝐹  =  ( 𝑏  ∈  𝐵  ↦  if ( ( 𝑏 ‘ 0 )  =   0  ,  𝑏 ,  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 ) ) ) | 
						
							| 3 |  | prjspner01.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 4 |  | prjspner01.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) | 
						
							| 5 |  | prjspner01.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | prjspner01.s | ⊢ 𝑆  =  ( Base ‘ 𝐾 ) | 
						
							| 7 |  | prjspner01.0 | ⊢  0   =  ( 0g ‘ 𝐾 ) | 
						
							| 8 |  | prjspner01.i | ⊢ 𝐼  =  ( invr ‘ 𝐾 ) | 
						
							| 9 |  | prjspner01.k | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 10 |  | prjspner01.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 |  | prjspner01.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 12 |  | prjspner1.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 13 |  | prjspner1.1 | ⊢ ( 𝜑  →  ( 𝑋 ‘ 0 )  ≠   0  ) | 
						
							| 14 |  | prjspner1.2 | ⊢ ( 𝜑  →  ( 𝑌 ‘ 0 )  ≠   0  ) | 
						
							| 15 | 1 | prjsprel | ⊢ ( 𝑋  ∼  𝑌  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 16 |  | fveq1 | ⊢ ( 𝑋  =  ( 0g ‘ 𝑊 )  →  ( 𝑋 ‘ 0 )  =  ( ( 0g ‘ 𝑊 ) ‘ 0 ) ) | 
						
							| 17 | 9 | drngringd | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 18 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ∈  V ) | 
						
							| 19 |  | 0elfz | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 20 | 10 19 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 21 | 4 7 17 18 20 | frlm0vald | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑊 ) ‘ 0 )  =   0  ) | 
						
							| 22 | 16 21 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑋  =  ( 0g ‘ 𝑊 ) )  →  ( 𝑋 ‘ 0 )  =   0  ) | 
						
							| 23 | 13 22 | mteqand | ⊢ ( 𝜑  →  𝑋  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 24 | 4 | frlmsca | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 𝑁 )  ∈  V )  →  𝐾  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 25 | 9 18 24 | syl2anc | ⊢ ( 𝜑  →  𝐾  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 27 | 7 26 | eqtrid | ⊢ ( 𝜑  →   0   =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝜑  →  (  0   ·  𝑌 )  =  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ·  𝑌 ) ) | 
						
							| 29 | 4 | frlmlvec | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 𝑁 )  ∈  V )  →  𝑊  ∈  LVec ) | 
						
							| 30 | 9 18 29 | syl2anc | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 31 | 30 | lveclmodd | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 32 | 12 3 | eleqtrdi | ⊢ ( 𝜑  →  𝑌  ∈  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 33 | 32 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 35 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 36 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 38 | 34 35 5 36 37 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ·  𝑌 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 39 | 31 33 38 | syl2anc | ⊢ ( 𝜑  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ·  𝑌 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 40 | 28 39 | eqtrd | ⊢ ( 𝜑  →  (  0   ·  𝑌 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 41 | 23 40 | neeqtrrd | ⊢ ( 𝜑  →  𝑋  ≠  (  0   ·  𝑌 ) ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  →  𝑋  ≠  (  0   ·  𝑌 ) ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑚  =   0   →  ( 𝑚  ·  𝑌 )  =  (  0   ·  𝑌 ) ) | 
						
							| 44 | 43 | neeq2d | ⊢ ( 𝑚  =   0   →  ( 𝑋  ≠  ( 𝑚  ·  𝑌 )  ↔  𝑋  ≠  (  0   ·  𝑌 ) ) ) | 
						
							| 45 | 42 44 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  →  ( 𝑚  =   0   →  𝑋  ≠  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 46 | 45 | necon2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  →  ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  𝑚  ≠   0  ) ) | 
						
							| 47 | 46 | ancrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  →  ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( 𝑚  ≠   0   ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) ) ) | 
						
							| 48 |  | ovexd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 0 ... 𝑁 )  ∈  V ) | 
						
							| 49 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝑚  ∈  𝑆 ) | 
						
							| 50 | 33 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝑌  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 51 | 20 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 52 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 53 | 4 34 6 48 49 50 51 5 52 | frlmvscaval | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝑚  ·  𝑌 ) ‘ 0 )  =  ( 𝑚 ( .r ‘ 𝐾 ) ( 𝑌 ‘ 0 ) ) ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝐼 ‘ ( ( 𝑚  ·  𝑌 ) ‘ 0 ) )  =  ( 𝐼 ‘ ( 𝑚 ( .r ‘ 𝐾 ) ( 𝑌 ‘ 0 ) ) ) ) | 
						
							| 55 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝐾  ∈  DivRing ) | 
						
							| 56 | 4 6 34 | frlmbasf | ⊢ ( ( ( 0 ... 𝑁 )  ∈  V  ∧  𝑌  ∈  ( Base ‘ 𝑊 ) )  →  𝑌 : ( 0 ... 𝑁 ) ⟶ 𝑆 ) | 
						
							| 57 | 18 33 56 | syl2anc | ⊢ ( 𝜑  →  𝑌 : ( 0 ... 𝑁 ) ⟶ 𝑆 ) | 
						
							| 58 | 57 20 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑌 ‘ 0 )  ∈  𝑆 ) | 
						
							| 59 | 58 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝑌 ‘ 0 )  ∈  𝑆 ) | 
						
							| 60 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝑚  ≠   0  ) | 
						
							| 61 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝑌 ‘ 0 )  ≠   0  ) | 
						
							| 62 | 6 7 52 8 55 49 59 60 61 | drnginvmuld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝐼 ‘ ( 𝑚 ( .r ‘ 𝐾 ) ( 𝑌 ‘ 0 ) ) )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ) | 
						
							| 63 | 54 62 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝐼 ‘ ( ( 𝑚  ·  𝑌 ) ‘ 0 ) )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ ( ( 𝑚  ·  𝑌 ) ‘ 0 ) )  ·  ( 𝑚  ·  𝑌 ) )  =  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) )  ·  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 65 | 31 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝑊  ∈  LMod ) | 
						
							| 66 | 17 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝐾  ∈  Ring ) | 
						
							| 67 | 6 7 8 55 59 61 | drnginvrcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ∈  𝑆 ) | 
						
							| 68 | 6 7 8 55 49 60 | drnginvrcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝐼 ‘ 𝑚 )  ∈  𝑆 ) | 
						
							| 69 | 6 52 66 67 68 | ringcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) )  ∈  𝑆 ) | 
						
							| 70 | 25 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 71 | 6 70 | eqtrid | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 72 | 71 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝑆  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 73 | 69 72 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 74 | 49 72 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝑚  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 75 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 76 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 77 | 34 35 5 75 76 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑚  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑌  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 )  ·  𝑌 )  =  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) )  ·  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 78 | 65 73 74 50 77 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 )  ·  𝑌 )  =  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) )  ·  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 79 | 6 52 66 67 68 49 | ringassd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ 𝐾 ) 𝑚 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 ) ) ) | 
						
							| 80 | 55 48 24 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  𝐾  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( .r ‘ 𝐾 )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 82 | 81 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ 𝐾 ) 𝑚 )  =  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 ) ) | 
						
							| 83 |  | eqid | ⊢ ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐾 ) | 
						
							| 84 | 6 7 52 83 8 55 49 60 | drnginvrld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 ) )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) | 
						
							| 86 | 6 52 83 66 67 | ringridmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) )  =  ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) | 
						
							| 87 | 85 86 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 ) )  =  ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) | 
						
							| 88 | 79 82 87 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 )  =  ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 )  ·  𝑌 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) | 
						
							| 90 | 64 78 89 | 3eqtr2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( ( 𝐼 ‘ ( ( 𝑚  ·  𝑌 ) ‘ 0 ) )  ·  ( 𝑚  ·  𝑌 ) )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) | 
						
							| 91 |  | fveq1 | ⊢ ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( 𝑋 ‘ 0 )  =  ( ( 𝑚  ·  𝑌 ) ‘ 0 ) ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  =  ( 𝐼 ‘ ( ( 𝑚  ·  𝑌 ) ‘ 0 ) ) ) | 
						
							| 93 |  | id | ⊢ ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 94 | 92 93 | oveq12d | ⊢ ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  =  ( ( 𝐼 ‘ ( ( 𝑚  ·  𝑌 ) ‘ 0 ) )  ·  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 95 | 94 | eqeq1d | ⊢ ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 )  ↔  ( ( 𝐼 ‘ ( ( 𝑚  ·  𝑌 ) ‘ 0 ) )  ·  ( 𝑚  ·  𝑌 ) )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 96 | 90 95 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  ∧  𝑚  ≠   0  )  →  ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 97 | 96 | expimpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  →  ( ( 𝑚  ≠   0   ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 98 | 47 97 | syld | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑆 )  →  ( 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 99 | 98 | rexlimdva | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 100 | 99 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) | 
						
							| 101 | 13 | neneqd | ⊢ ( 𝜑  →  ¬  ( 𝑋 ‘ 0 )  =   0  ) | 
						
							| 102 | 101 | iffalsed | ⊢ ( 𝜑  →  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) )  =  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) )  =  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) | 
						
							| 104 | 14 | neneqd | ⊢ ( 𝜑  →  ¬  ( 𝑌 ‘ 0 )  =   0  ) | 
						
							| 105 | 104 | iffalsed | ⊢ ( 𝜑  →  if ( ( 𝑌 ‘ 0 )  =   0  ,  𝑌 ,  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  if ( ( 𝑌 ‘ 0 )  =   0  ,  𝑌 ,  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) | 
						
							| 107 | 100 103 106 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) )  =  if ( ( 𝑌 ‘ 0 )  =   0  ,  𝑌 ,  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 108 |  | fveq1 | ⊢ ( 𝑏  =  𝑋  →  ( 𝑏 ‘ 0 )  =  ( 𝑋 ‘ 0 ) ) | 
						
							| 109 | 108 | eqeq1d | ⊢ ( 𝑏  =  𝑋  →  ( ( 𝑏 ‘ 0 )  =   0   ↔  ( 𝑋 ‘ 0 )  =   0  ) ) | 
						
							| 110 |  | id | ⊢ ( 𝑏  =  𝑋  →  𝑏  =  𝑋 ) | 
						
							| 111 | 108 | fveq2d | ⊢ ( 𝑏  =  𝑋  →  ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  =  ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ) | 
						
							| 112 | 111 110 | oveq12d | ⊢ ( 𝑏  =  𝑋  →  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 )  =  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) | 
						
							| 113 | 109 110 112 | ifbieq12d | ⊢ ( 𝑏  =  𝑋  →  if ( ( 𝑏 ‘ 0 )  =   0  ,  𝑏 ,  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 ) )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) ) | 
						
							| 114 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 115 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  ∈  V ) | 
						
							| 116 | 114 115 | ifexd | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) )  ∈  V ) | 
						
							| 117 | 2 113 114 116 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  ( 𝐹 ‘ 𝑋 )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) ) | 
						
							| 118 |  | fveq1 | ⊢ ( 𝑏  =  𝑌  →  ( 𝑏 ‘ 0 )  =  ( 𝑌 ‘ 0 ) ) | 
						
							| 119 | 118 | eqeq1d | ⊢ ( 𝑏  =  𝑌  →  ( ( 𝑏 ‘ 0 )  =   0   ↔  ( 𝑌 ‘ 0 )  =   0  ) ) | 
						
							| 120 |  | id | ⊢ ( 𝑏  =  𝑌  →  𝑏  =  𝑌 ) | 
						
							| 121 | 118 | fveq2d | ⊢ ( 𝑏  =  𝑌  →  ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  =  ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) | 
						
							| 122 | 121 120 | oveq12d | ⊢ ( 𝑏  =  𝑌  →  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 )  =  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) | 
						
							| 123 | 119 120 122 | ifbieq12d | ⊢ ( 𝑏  =  𝑌  →  if ( ( 𝑏 ‘ 0 )  =   0  ,  𝑏 ,  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 ) )  =  if ( ( 𝑌 ‘ 0 )  =   0  ,  𝑌 ,  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 124 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 125 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 )  ∈  V ) | 
						
							| 126 | 124 125 | ifexd | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  if ( ( 𝑌 ‘ 0 )  =   0  ,  𝑌 ,  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) )  ∈  V ) | 
						
							| 127 | 2 123 124 126 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  ( 𝐹 ‘ 𝑌 )  =  if ( ( 𝑌 ‘ 0 )  =   0  ,  𝑌 ,  ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) )  ·  𝑌 ) ) ) | 
						
							| 128 | 107 117 127 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 129 | 15 128 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑋  ∼  𝑌 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 130 | 1 4 3 6 5 9 | prjspner | ⊢ ( 𝜑  →   ∼   Er  𝐵 ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →   ∼   Er  𝐵 ) | 
						
							| 132 | 1 2 3 4 5 6 7 8 9 10 11 | prjspner01 | ⊢ ( 𝜑  →  𝑋  ∼  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  𝑋  ∼  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 134 | 130 132 | ercl2 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 135 | 134 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 136 | 131 135 | erref | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  ∼  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 137 |  | breq2 | ⊢ ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  ( ( 𝐹 ‘ 𝑋 )  ∼  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑋 )  ∼  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 138 | 137 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  ( ( 𝐹 ‘ 𝑋 )  ∼  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑋 )  ∼  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 139 | 136 138 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  ∼  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 140 | 1 2 3 4 5 6 7 8 9 10 12 | prjspner01 | ⊢ ( 𝜑  →  𝑌  ∼  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 141 | 140 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  𝑌  ∼  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 142 | 131 139 141 | ertr4d | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  ∼  𝑌 ) | 
						
							| 143 | 131 133 142 | ertrd | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) )  →  𝑋  ∼  𝑌 ) | 
						
							| 144 | 129 143 | impbida | ⊢ ( 𝜑  →  ( 𝑋  ∼  𝑌  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) ) |