Step |
Hyp |
Ref |
Expression |
1 |
|
prjspner01.e |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
prjspner01.f |
⊢ 𝐹 = ( 𝑏 ∈ 𝐵 ↦ if ( ( 𝑏 ‘ 0 ) = 0 , 𝑏 , ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) ) ) |
3 |
|
prjspner01.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
4 |
|
prjspner01.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) |
5 |
|
prjspner01.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
prjspner01.s |
⊢ 𝑆 = ( Base ‘ 𝐾 ) |
7 |
|
prjspner01.0 |
⊢ 0 = ( 0g ‘ 𝐾 ) |
8 |
|
prjspner01.i |
⊢ 𝐼 = ( invr ‘ 𝐾 ) |
9 |
|
prjspner01.k |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
10 |
|
prjspner01.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
prjspner01.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
12 |
|
prjspner1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
13 |
|
prjspner1.1 |
⊢ ( 𝜑 → ( 𝑋 ‘ 0 ) ≠ 0 ) |
14 |
|
prjspner1.2 |
⊢ ( 𝜑 → ( 𝑌 ‘ 0 ) ≠ 0 ) |
15 |
1
|
prjsprel |
⊢ ( 𝑋 ∼ 𝑌 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) |
16 |
|
fveq1 |
⊢ ( 𝑋 = ( 0g ‘ 𝑊 ) → ( 𝑋 ‘ 0 ) = ( ( 0g ‘ 𝑊 ) ‘ 0 ) ) |
17 |
9
|
drngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
18 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ V ) |
19 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
20 |
10 19
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
21 |
4 7 17 18 20
|
frlm0vald |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑊 ) ‘ 0 ) = 0 ) |
22 |
16 21
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑊 ) ) → ( 𝑋 ‘ 0 ) = 0 ) |
23 |
13 22
|
mteqand |
⊢ ( 𝜑 → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) |
24 |
4
|
frlmsca |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 𝑁 ) ∈ V ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
25 |
9 18 24
|
syl2anc |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
27 |
7 26
|
syl5eq |
⊢ ( 𝜑 → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( 0 · 𝑌 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) · 𝑌 ) ) |
29 |
4
|
frlmlvec |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 𝑁 ) ∈ V ) → 𝑊 ∈ LVec ) |
30 |
9 18 29
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
31 |
30
|
lveclmodd |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
32 |
12 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
33 |
32
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
35 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
36 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
38 |
34 35 5 36 37
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) · 𝑌 ) = ( 0g ‘ 𝑊 ) ) |
39 |
31 33 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) · 𝑌 ) = ( 0g ‘ 𝑊 ) ) |
40 |
28 39
|
eqtrd |
⊢ ( 𝜑 → ( 0 · 𝑌 ) = ( 0g ‘ 𝑊 ) ) |
41 |
23 40
|
neeqtrrd |
⊢ ( 𝜑 → 𝑋 ≠ ( 0 · 𝑌 ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) → 𝑋 ≠ ( 0 · 𝑌 ) ) |
43 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑌 ) = ( 0 · 𝑌 ) ) |
44 |
43
|
neeq2d |
⊢ ( 𝑚 = 0 → ( 𝑋 ≠ ( 𝑚 · 𝑌 ) ↔ 𝑋 ≠ ( 0 · 𝑌 ) ) ) |
45 |
42 44
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) → ( 𝑚 = 0 → 𝑋 ≠ ( 𝑚 · 𝑌 ) ) ) |
46 |
45
|
necon2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) → ( 𝑋 = ( 𝑚 · 𝑌 ) → 𝑚 ≠ 0 ) ) |
47 |
46
|
ancrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) → ( 𝑋 = ( 𝑚 · 𝑌 ) → ( 𝑚 ≠ 0 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ) |
48 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 0 ... 𝑁 ) ∈ V ) |
49 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝑚 ∈ 𝑆 ) |
50 |
33
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
51 |
20
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
52 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
53 |
4 34 6 48 49 50 51 5 52
|
frlmvscaval |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝑚 · 𝑌 ) ‘ 0 ) = ( 𝑚 ( .r ‘ 𝐾 ) ( 𝑌 ‘ 0 ) ) ) |
54 |
53
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝐼 ‘ ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑚 ( .r ‘ 𝐾 ) ( 𝑌 ‘ 0 ) ) ) ) |
55 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝐾 ∈ DivRing ) |
56 |
4 6 34
|
frlmbasf |
⊢ ( ( ( 0 ... 𝑁 ) ∈ V ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → 𝑌 : ( 0 ... 𝑁 ) ⟶ 𝑆 ) |
57 |
18 33 56
|
syl2anc |
⊢ ( 𝜑 → 𝑌 : ( 0 ... 𝑁 ) ⟶ 𝑆 ) |
58 |
57 20
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑌 ‘ 0 ) ∈ 𝑆 ) |
59 |
58
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝑌 ‘ 0 ) ∈ 𝑆 ) |
60 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝑚 ≠ 0 ) |
61 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝑌 ‘ 0 ) ≠ 0 ) |
62 |
6 7 52 8 55 49 59 60 61
|
drnginvmuld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝐼 ‘ ( 𝑚 ( .r ‘ 𝐾 ) ( 𝑌 ‘ 0 ) ) ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ) |
63 |
54 62
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝐼 ‘ ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ) |
64 |
63
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) · ( 𝑚 · 𝑌 ) ) = ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) · ( 𝑚 · 𝑌 ) ) ) |
65 |
31
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝑊 ∈ LMod ) |
66 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝐾 ∈ Ring ) |
67 |
6 7 8 55 59 61
|
drnginvrcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ∈ 𝑆 ) |
68 |
6 7 8 55 49 60
|
drnginvrcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝐼 ‘ 𝑚 ) ∈ 𝑆 ) |
69 |
6 52 66 67 68
|
ringcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ∈ 𝑆 ) |
70 |
25
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
71 |
6 70
|
syl5eq |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
72 |
71
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝑆 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
73 |
69 72
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
74 |
49 72
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
75 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
76 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
77 |
34 35 5 75 76
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 ) · 𝑌 ) = ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) · ( 𝑚 · 𝑌 ) ) ) |
78 |
65 73 74 50 77
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 ) · 𝑌 ) = ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) · ( 𝑚 · 𝑌 ) ) ) |
79 |
6 52 66 67 68 49
|
ringassd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ 𝐾 ) 𝑚 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 ) ) ) |
80 |
55 48 24
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
81 |
80
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( .r ‘ 𝐾 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
82 |
81
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ 𝐾 ) 𝑚 ) = ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 ) ) |
83 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
84 |
6 7 52 83 8 55 49 60
|
drnginvrld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 ) = ( 1r ‘ 𝐾 ) ) |
85 |
84
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 ) ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) |
86 |
6 52 83 66 67
|
ringridmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) |
87 |
85 86
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( ( 𝐼 ‘ 𝑚 ) ( .r ‘ 𝐾 ) 𝑚 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) |
88 |
79 82 87
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 ) = ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) |
89 |
88
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝐼 ‘ 𝑚 ) ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑚 ) · 𝑌 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) |
90 |
64 78 89
|
3eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( ( 𝐼 ‘ ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) · ( 𝑚 · 𝑌 ) ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) |
91 |
|
fveq1 |
⊢ ( 𝑋 = ( 𝑚 · 𝑌 ) → ( 𝑋 ‘ 0 ) = ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) |
92 |
91
|
fveq2d |
⊢ ( 𝑋 = ( 𝑚 · 𝑌 ) → ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) = ( 𝐼 ‘ ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) ) |
93 |
|
id |
⊢ ( 𝑋 = ( 𝑚 · 𝑌 ) → 𝑋 = ( 𝑚 · 𝑌 ) ) |
94 |
92 93
|
oveq12d |
⊢ ( 𝑋 = ( 𝑚 · 𝑌 ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) = ( ( 𝐼 ‘ ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) · ( 𝑚 · 𝑌 ) ) ) |
95 |
94
|
eqeq1d |
⊢ ( 𝑋 = ( 𝑚 · 𝑌 ) → ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ↔ ( ( 𝐼 ‘ ( ( 𝑚 · 𝑌 ) ‘ 0 ) ) · ( 𝑚 · 𝑌 ) ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
96 |
90 95
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑚 ≠ 0 ) → ( 𝑋 = ( 𝑚 · 𝑌 ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
97 |
96
|
expimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) → ( ( 𝑚 ≠ 0 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
98 |
47 97
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑆 ) → ( 𝑋 = ( 𝑚 · 𝑌 ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
99 |
98
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
100 |
99
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) |
101 |
13
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑋 ‘ 0 ) = 0 ) |
102 |
101
|
iffalsed |
⊢ ( 𝜑 → if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) = ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) = ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) |
104 |
14
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑌 ‘ 0 ) = 0 ) |
105 |
104
|
iffalsed |
⊢ ( 𝜑 → if ( ( 𝑌 ‘ 0 ) = 0 , 𝑌 , ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → if ( ( 𝑌 ‘ 0 ) = 0 , 𝑌 , ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) |
107 |
100 103 106
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) = if ( ( 𝑌 ‘ 0 ) = 0 , 𝑌 , ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
108 |
|
fveq1 |
⊢ ( 𝑏 = 𝑋 → ( 𝑏 ‘ 0 ) = ( 𝑋 ‘ 0 ) ) |
109 |
108
|
eqeq1d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝑏 ‘ 0 ) = 0 ↔ ( 𝑋 ‘ 0 ) = 0 ) ) |
110 |
|
id |
⊢ ( 𝑏 = 𝑋 → 𝑏 = 𝑋 ) |
111 |
108
|
fveq2d |
⊢ ( 𝑏 = 𝑋 → ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ) |
112 |
111 110
|
oveq12d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) = ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) |
113 |
109 110 112
|
ifbieq12d |
⊢ ( 𝑏 = 𝑋 → if ( ( 𝑏 ‘ 0 ) = 0 , 𝑏 , ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) ) = if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
114 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → 𝑋 ∈ 𝐵 ) |
115 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ∈ V ) |
116 |
114 115
|
ifexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ∈ V ) |
117 |
2 113 114 116
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → ( 𝐹 ‘ 𝑋 ) = if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
118 |
|
fveq1 |
⊢ ( 𝑏 = 𝑌 → ( 𝑏 ‘ 0 ) = ( 𝑌 ‘ 0 ) ) |
119 |
118
|
eqeq1d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑏 ‘ 0 ) = 0 ↔ ( 𝑌 ‘ 0 ) = 0 ) ) |
120 |
|
id |
⊢ ( 𝑏 = 𝑌 → 𝑏 = 𝑌 ) |
121 |
118
|
fveq2d |
⊢ ( 𝑏 = 𝑌 → ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) ) |
122 |
121 120
|
oveq12d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) = ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) |
123 |
119 120 122
|
ifbieq12d |
⊢ ( 𝑏 = 𝑌 → if ( ( 𝑏 ‘ 0 ) = 0 , 𝑏 , ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) ) = if ( ( 𝑌 ‘ 0 ) = 0 , 𝑌 , ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
124 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → 𝑌 ∈ 𝐵 ) |
125 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ∈ V ) |
126 |
124 125
|
ifexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → if ( ( 𝑌 ‘ 0 ) = 0 , 𝑌 , ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ∈ V ) |
127 |
2 123 124 126
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → ( 𝐹 ‘ 𝑌 ) = if ( ( 𝑌 ‘ 0 ) = 0 , 𝑌 , ( ( 𝐼 ‘ ( 𝑌 ‘ 0 ) ) · 𝑌 ) ) ) |
128 |
107 117 127
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 𝑌 ) ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
129 |
15 128
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑋 ∼ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
130 |
1 4 3 6 5 9
|
prjspner |
⊢ ( 𝜑 → ∼ Er 𝐵 ) |
131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ∼ Er 𝐵 ) |
132 |
1 2 3 4 5 6 7 8 9 10 11
|
prjspner01 |
⊢ ( 𝜑 → 𝑋 ∼ ( 𝐹 ‘ 𝑋 ) ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → 𝑋 ∼ ( 𝐹 ‘ 𝑋 ) ) |
134 |
130 132
|
ercl2 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
136 |
131 135
|
erref |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) ∼ ( 𝐹 ‘ 𝑋 ) ) |
137 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) ∼ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) ∼ ( 𝐹 ‘ 𝑌 ) ) ) |
138 |
137
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) ∼ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) ∼ ( 𝐹 ‘ 𝑌 ) ) ) |
139 |
136 138
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) ∼ ( 𝐹 ‘ 𝑌 ) ) |
140 |
1 2 3 4 5 6 7 8 9 10 12
|
prjspner01 |
⊢ ( 𝜑 → 𝑌 ∼ ( 𝐹 ‘ 𝑌 ) ) |
141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → 𝑌 ∼ ( 𝐹 ‘ 𝑌 ) ) |
142 |
131 139 141
|
ertr4d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) ∼ 𝑌 ) |
143 |
131 133 142
|
ertrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → 𝑋 ∼ 𝑌 ) |
144 |
129 143
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∼ 𝑌 ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |