| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjspner01.e |
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } |
| 2 |
|
prjspner01.f |
|- F = ( b e. B |-> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) ) |
| 3 |
|
prjspner01.b |
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } ) |
| 4 |
|
prjspner01.w |
|- W = ( K freeLMod ( 0 ... N ) ) |
| 5 |
|
prjspner01.t |
|- .x. = ( .s ` W ) |
| 6 |
|
prjspner01.s |
|- S = ( Base ` K ) |
| 7 |
|
prjspner01.0 |
|- .0. = ( 0g ` K ) |
| 8 |
|
prjspner01.i |
|- I = ( invr ` K ) |
| 9 |
|
prjspner01.k |
|- ( ph -> K e. DivRing ) |
| 10 |
|
prjspner01.n |
|- ( ph -> N e. NN0 ) |
| 11 |
|
prjspner01.x |
|- ( ph -> X e. B ) |
| 12 |
|
prjspner1.y |
|- ( ph -> Y e. B ) |
| 13 |
|
prjspner1.1 |
|- ( ph -> ( X ` 0 ) =/= .0. ) |
| 14 |
|
prjspner1.2 |
|- ( ph -> ( Y ` 0 ) =/= .0. ) |
| 15 |
1
|
prjsprel |
|- ( X .~ Y <-> ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) |
| 16 |
|
fveq1 |
|- ( X = ( 0g ` W ) -> ( X ` 0 ) = ( ( 0g ` W ) ` 0 ) ) |
| 17 |
9
|
drngringd |
|- ( ph -> K e. Ring ) |
| 18 |
|
ovexd |
|- ( ph -> ( 0 ... N ) e. _V ) |
| 19 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
| 20 |
10 19
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
| 21 |
4 7 17 18 20
|
frlm0vald |
|- ( ph -> ( ( 0g ` W ) ` 0 ) = .0. ) |
| 22 |
16 21
|
sylan9eqr |
|- ( ( ph /\ X = ( 0g ` W ) ) -> ( X ` 0 ) = .0. ) |
| 23 |
13 22
|
mteqand |
|- ( ph -> X =/= ( 0g ` W ) ) |
| 24 |
4
|
frlmsca |
|- ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> K = ( Scalar ` W ) ) |
| 25 |
9 18 24
|
syl2anc |
|- ( ph -> K = ( Scalar ` W ) ) |
| 26 |
25
|
fveq2d |
|- ( ph -> ( 0g ` K ) = ( 0g ` ( Scalar ` W ) ) ) |
| 27 |
7 26
|
eqtrid |
|- ( ph -> .0. = ( 0g ` ( Scalar ` W ) ) ) |
| 28 |
27
|
oveq1d |
|- ( ph -> ( .0. .x. Y ) = ( ( 0g ` ( Scalar ` W ) ) .x. Y ) ) |
| 29 |
4
|
frlmlvec |
|- ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> W e. LVec ) |
| 30 |
9 18 29
|
syl2anc |
|- ( ph -> W e. LVec ) |
| 31 |
30
|
lveclmodd |
|- ( ph -> W e. LMod ) |
| 32 |
12 3
|
eleqtrdi |
|- ( ph -> Y e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) |
| 33 |
32
|
eldifad |
|- ( ph -> Y e. ( Base ` W ) ) |
| 34 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 35 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 36 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 37 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 38 |
34 35 5 36 37
|
lmod0vs |
|- ( ( W e. LMod /\ Y e. ( Base ` W ) ) -> ( ( 0g ` ( Scalar ` W ) ) .x. Y ) = ( 0g ` W ) ) |
| 39 |
31 33 38
|
syl2anc |
|- ( ph -> ( ( 0g ` ( Scalar ` W ) ) .x. Y ) = ( 0g ` W ) ) |
| 40 |
28 39
|
eqtrd |
|- ( ph -> ( .0. .x. Y ) = ( 0g ` W ) ) |
| 41 |
23 40
|
neeqtrrd |
|- ( ph -> X =/= ( .0. .x. Y ) ) |
| 42 |
41
|
ad2antrr |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> X =/= ( .0. .x. Y ) ) |
| 43 |
|
oveq1 |
|- ( m = .0. -> ( m .x. Y ) = ( .0. .x. Y ) ) |
| 44 |
43
|
neeq2d |
|- ( m = .0. -> ( X =/= ( m .x. Y ) <-> X =/= ( .0. .x. Y ) ) ) |
| 45 |
42 44
|
syl5ibrcom |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( m = .0. -> X =/= ( m .x. Y ) ) ) |
| 46 |
45
|
necon2d |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( X = ( m .x. Y ) -> m =/= .0. ) ) |
| 47 |
46
|
ancrd |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( X = ( m .x. Y ) -> ( m =/= .0. /\ X = ( m .x. Y ) ) ) ) |
| 48 |
|
ovexd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( 0 ... N ) e. _V ) |
| 49 |
|
simplr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> m e. S ) |
| 50 |
33
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> Y e. ( Base ` W ) ) |
| 51 |
20
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> 0 e. ( 0 ... N ) ) |
| 52 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 53 |
4 34 6 48 49 50 51 5 52
|
frlmvscaval |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( m .x. Y ) ` 0 ) = ( m ( .r ` K ) ( Y ` 0 ) ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( ( m .x. Y ) ` 0 ) ) = ( I ` ( m ( .r ` K ) ( Y ` 0 ) ) ) ) |
| 55 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> K e. DivRing ) |
| 56 |
4 6 34
|
frlmbasf |
|- ( ( ( 0 ... N ) e. _V /\ Y e. ( Base ` W ) ) -> Y : ( 0 ... N ) --> S ) |
| 57 |
18 33 56
|
syl2anc |
|- ( ph -> Y : ( 0 ... N ) --> S ) |
| 58 |
57 20
|
ffvelcdmd |
|- ( ph -> ( Y ` 0 ) e. S ) |
| 59 |
58
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( Y ` 0 ) e. S ) |
| 60 |
|
simpr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> m =/= .0. ) |
| 61 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( Y ` 0 ) =/= .0. ) |
| 62 |
6 7 52 8 55 49 59 60 61
|
drnginvmuld |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( m ( .r ` K ) ( Y ` 0 ) ) ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ) |
| 63 |
54 62
|
eqtrd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( ( m .x. Y ) ` 0 ) ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ) |
| 64 |
63
|
oveq1d |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) .x. ( m .x. Y ) ) ) |
| 65 |
31
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> W e. LMod ) |
| 66 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> K e. Ring ) |
| 67 |
6 7 8 55 59 61
|
drnginvrcld |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( Y ` 0 ) ) e. S ) |
| 68 |
6 7 8 55 49 60
|
drnginvrcld |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` m ) e. S ) |
| 69 |
6 52 66 67 68
|
ringcld |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) e. S ) |
| 70 |
25
|
fveq2d |
|- ( ph -> ( Base ` K ) = ( Base ` ( Scalar ` W ) ) ) |
| 71 |
6 70
|
eqtrid |
|- ( ph -> S = ( Base ` ( Scalar ` W ) ) ) |
| 72 |
71
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> S = ( Base ` ( Scalar ` W ) ) ) |
| 73 |
69 72
|
eleqtrd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 74 |
49 72
|
eleqtrd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> m e. ( Base ` ( Scalar ` W ) ) ) |
| 75 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 76 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
| 77 |
34 35 5 75 76
|
lmodvsass |
|- ( ( W e. LMod /\ ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) e. ( Base ` ( Scalar ` W ) ) /\ m e. ( Base ` ( Scalar ` W ) ) /\ Y e. ( Base ` W ) ) ) -> ( ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) .x. Y ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) .x. ( m .x. Y ) ) ) |
| 78 |
65 73 74 50 77
|
syl13anc |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) .x. Y ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) .x. ( m .x. Y ) ) ) |
| 79 |
6 52 66 67 68 49
|
ringassd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` K ) m ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( ( I ` m ) ( .r ` K ) m ) ) ) |
| 80 |
55 48 24
|
syl2anc |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> K = ( Scalar ` W ) ) |
| 81 |
80
|
fveq2d |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( .r ` K ) = ( .r ` ( Scalar ` W ) ) ) |
| 82 |
81
|
oveqd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` K ) m ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) ) |
| 83 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
| 84 |
6 7 52 83 8 55 49 60
|
drnginvrld |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` m ) ( .r ` K ) m ) = ( 1r ` K ) ) |
| 85 |
84
|
oveq2d |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( ( I ` m ) ( .r ` K ) m ) ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( 1r ` K ) ) ) |
| 86 |
6 52 83 66 67
|
ringridmd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( 1r ` K ) ) = ( I ` ( Y ` 0 ) ) ) |
| 87 |
85 86
|
eqtrd |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( ( I ` m ) ( .r ` K ) m ) ) = ( I ` ( Y ` 0 ) ) ) |
| 88 |
79 82 87
|
3eqtr3d |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) = ( I ` ( Y ` 0 ) ) ) |
| 89 |
88
|
oveq1d |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) .x. Y ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) |
| 90 |
64 78 89
|
3eqtr2d |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) |
| 91 |
|
fveq1 |
|- ( X = ( m .x. Y ) -> ( X ` 0 ) = ( ( m .x. Y ) ` 0 ) ) |
| 92 |
91
|
fveq2d |
|- ( X = ( m .x. Y ) -> ( I ` ( X ` 0 ) ) = ( I ` ( ( m .x. Y ) ` 0 ) ) ) |
| 93 |
|
id |
|- ( X = ( m .x. Y ) -> X = ( m .x. Y ) ) |
| 94 |
92 93
|
oveq12d |
|- ( X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) ) |
| 95 |
94
|
eqeq1d |
|- ( X = ( m .x. Y ) -> ( ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) <-> ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 96 |
90 95
|
syl5ibrcom |
|- ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 97 |
96
|
expimpd |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( ( m =/= .0. /\ X = ( m .x. Y ) ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 98 |
47 97
|
syld |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 99 |
98
|
rexlimdva |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( E. m e. S X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 100 |
99
|
impr |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) |
| 101 |
13
|
neneqd |
|- ( ph -> -. ( X ` 0 ) = .0. ) |
| 102 |
101
|
iffalsed |
|- ( ph -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) |
| 103 |
102
|
adantr |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) |
| 104 |
14
|
neneqd |
|- ( ph -> -. ( Y ` 0 ) = .0. ) |
| 105 |
104
|
iffalsed |
|- ( ph -> if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) |
| 107 |
100 103 106
|
3eqtr4d |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) = if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 108 |
|
fveq1 |
|- ( b = X -> ( b ` 0 ) = ( X ` 0 ) ) |
| 109 |
108
|
eqeq1d |
|- ( b = X -> ( ( b ` 0 ) = .0. <-> ( X ` 0 ) = .0. ) ) |
| 110 |
|
id |
|- ( b = X -> b = X ) |
| 111 |
108
|
fveq2d |
|- ( b = X -> ( I ` ( b ` 0 ) ) = ( I ` ( X ` 0 ) ) ) |
| 112 |
111 110
|
oveq12d |
|- ( b = X -> ( ( I ` ( b ` 0 ) ) .x. b ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) |
| 113 |
109 110 112
|
ifbieq12d |
|- ( b = X -> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) |
| 114 |
|
simprll |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> X e. B ) |
| 115 |
|
ovexd |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( ( I ` ( X ` 0 ) ) .x. X ) e. _V ) |
| 116 |
114 115
|
ifexd |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) e. _V ) |
| 117 |
2 113 114 116
|
fvmptd3 |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( F ` X ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) |
| 118 |
|
fveq1 |
|- ( b = Y -> ( b ` 0 ) = ( Y ` 0 ) ) |
| 119 |
118
|
eqeq1d |
|- ( b = Y -> ( ( b ` 0 ) = .0. <-> ( Y ` 0 ) = .0. ) ) |
| 120 |
|
id |
|- ( b = Y -> b = Y ) |
| 121 |
118
|
fveq2d |
|- ( b = Y -> ( I ` ( b ` 0 ) ) = ( I ` ( Y ` 0 ) ) ) |
| 122 |
121 120
|
oveq12d |
|- ( b = Y -> ( ( I ` ( b ` 0 ) ) .x. b ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) |
| 123 |
119 120 122
|
ifbieq12d |
|- ( b = Y -> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) = if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 124 |
|
simprlr |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> Y e. B ) |
| 125 |
|
ovexd |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( ( I ` ( Y ` 0 ) ) .x. Y ) e. _V ) |
| 126 |
124 125
|
ifexd |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) e. _V ) |
| 127 |
2 123 124 126
|
fvmptd3 |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( F ` Y ) = if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) |
| 128 |
107 117 127
|
3eqtr4d |
|- ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( F ` X ) = ( F ` Y ) ) |
| 129 |
15 128
|
sylan2b |
|- ( ( ph /\ X .~ Y ) -> ( F ` X ) = ( F ` Y ) ) |
| 130 |
1 4 3 6 5 9
|
prjspner |
|- ( ph -> .~ Er B ) |
| 131 |
130
|
adantr |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> .~ Er B ) |
| 132 |
1 2 3 4 5 6 7 8 9 10 11
|
prjspner01 |
|- ( ph -> X .~ ( F ` X ) ) |
| 133 |
132
|
adantr |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> X .~ ( F ` X ) ) |
| 134 |
130 132
|
ercl2 |
|- ( ph -> ( F ` X ) e. B ) |
| 135 |
134
|
adantr |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) e. B ) |
| 136 |
131 135
|
erref |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) .~ ( F ` X ) ) |
| 137 |
|
breq2 |
|- ( ( F ` X ) = ( F ` Y ) -> ( ( F ` X ) .~ ( F ` X ) <-> ( F ` X ) .~ ( F ` Y ) ) ) |
| 138 |
137
|
adantl |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( ( F ` X ) .~ ( F ` X ) <-> ( F ` X ) .~ ( F ` Y ) ) ) |
| 139 |
136 138
|
mpbid |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) .~ ( F ` Y ) ) |
| 140 |
1 2 3 4 5 6 7 8 9 10 12
|
prjspner01 |
|- ( ph -> Y .~ ( F ` Y ) ) |
| 141 |
140
|
adantr |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> Y .~ ( F ` Y ) ) |
| 142 |
131 139 141
|
ertr4d |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) .~ Y ) |
| 143 |
131 133 142
|
ertrd |
|- ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> X .~ Y ) |
| 144 |
129 143
|
impbida |
|- ( ph -> ( X .~ Y <-> ( F ` X ) = ( F ` Y ) ) ) |