| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspner01.e |  |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } | 
						
							| 2 |  | prjspner01.f |  |-  F = ( b e. B |-> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) ) | 
						
							| 3 |  | prjspner01.b |  |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } ) | 
						
							| 4 |  | prjspner01.w |  |-  W = ( K freeLMod ( 0 ... N ) ) | 
						
							| 5 |  | prjspner01.t |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | prjspner01.s |  |-  S = ( Base ` K ) | 
						
							| 7 |  | prjspner01.0 |  |-  .0. = ( 0g ` K ) | 
						
							| 8 |  | prjspner01.i |  |-  I = ( invr ` K ) | 
						
							| 9 |  | prjspner01.k |  |-  ( ph -> K e. DivRing ) | 
						
							| 10 |  | prjspner01.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 11 |  | prjspner01.x |  |-  ( ph -> X e. B ) | 
						
							| 12 |  | prjspner1.y |  |-  ( ph -> Y e. B ) | 
						
							| 13 |  | prjspner1.1 |  |-  ( ph -> ( X ` 0 ) =/= .0. ) | 
						
							| 14 |  | prjspner1.2 |  |-  ( ph -> ( Y ` 0 ) =/= .0. ) | 
						
							| 15 | 1 | prjsprel |  |-  ( X .~ Y <-> ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) | 
						
							| 16 |  | fveq1 |  |-  ( X = ( 0g ` W ) -> ( X ` 0 ) = ( ( 0g ` W ) ` 0 ) ) | 
						
							| 17 | 9 | drngringd |  |-  ( ph -> K e. Ring ) | 
						
							| 18 |  | ovexd |  |-  ( ph -> ( 0 ... N ) e. _V ) | 
						
							| 19 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 20 | 10 19 | syl |  |-  ( ph -> 0 e. ( 0 ... N ) ) | 
						
							| 21 | 4 7 17 18 20 | frlm0vald |  |-  ( ph -> ( ( 0g ` W ) ` 0 ) = .0. ) | 
						
							| 22 | 16 21 | sylan9eqr |  |-  ( ( ph /\ X = ( 0g ` W ) ) -> ( X ` 0 ) = .0. ) | 
						
							| 23 | 13 22 | mteqand |  |-  ( ph -> X =/= ( 0g ` W ) ) | 
						
							| 24 | 4 | frlmsca |  |-  ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> K = ( Scalar ` W ) ) | 
						
							| 25 | 9 18 24 | syl2anc |  |-  ( ph -> K = ( Scalar ` W ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ph -> ( 0g ` K ) = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 27 | 7 26 | eqtrid |  |-  ( ph -> .0. = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ph -> ( .0. .x. Y ) = ( ( 0g ` ( Scalar ` W ) ) .x. Y ) ) | 
						
							| 29 | 4 | frlmlvec |  |-  ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> W e. LVec ) | 
						
							| 30 | 9 18 29 | syl2anc |  |-  ( ph -> W e. LVec ) | 
						
							| 31 | 30 | lveclmodd |  |-  ( ph -> W e. LMod ) | 
						
							| 32 | 12 3 | eleqtrdi |  |-  ( ph -> Y e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) | 
						
							| 33 | 32 | eldifad |  |-  ( ph -> Y e. ( Base ` W ) ) | 
						
							| 34 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 35 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 36 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 37 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 38 | 34 35 5 36 37 | lmod0vs |  |-  ( ( W e. LMod /\ Y e. ( Base ` W ) ) -> ( ( 0g ` ( Scalar ` W ) ) .x. Y ) = ( 0g ` W ) ) | 
						
							| 39 | 31 33 38 | syl2anc |  |-  ( ph -> ( ( 0g ` ( Scalar ` W ) ) .x. Y ) = ( 0g ` W ) ) | 
						
							| 40 | 28 39 | eqtrd |  |-  ( ph -> ( .0. .x. Y ) = ( 0g ` W ) ) | 
						
							| 41 | 23 40 | neeqtrrd |  |-  ( ph -> X =/= ( .0. .x. Y ) ) | 
						
							| 42 | 41 | ad2antrr |  |-  ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> X =/= ( .0. .x. Y ) ) | 
						
							| 43 |  | oveq1 |  |-  ( m = .0. -> ( m .x. Y ) = ( .0. .x. Y ) ) | 
						
							| 44 | 43 | neeq2d |  |-  ( m = .0. -> ( X =/= ( m .x. Y ) <-> X =/= ( .0. .x. Y ) ) ) | 
						
							| 45 | 42 44 | syl5ibrcom |  |-  ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( m = .0. -> X =/= ( m .x. Y ) ) ) | 
						
							| 46 | 45 | necon2d |  |-  ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( X = ( m .x. Y ) -> m =/= .0. ) ) | 
						
							| 47 | 46 | ancrd |  |-  ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( X = ( m .x. Y ) -> ( m =/= .0. /\ X = ( m .x. Y ) ) ) ) | 
						
							| 48 |  | ovexd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( 0 ... N ) e. _V ) | 
						
							| 49 |  | simplr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> m e. S ) | 
						
							| 50 | 33 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> Y e. ( Base ` W ) ) | 
						
							| 51 | 20 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> 0 e. ( 0 ... N ) ) | 
						
							| 52 |  | eqid |  |-  ( .r ` K ) = ( .r ` K ) | 
						
							| 53 | 4 34 6 48 49 50 51 5 52 | frlmvscaval |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( m .x. Y ) ` 0 ) = ( m ( .r ` K ) ( Y ` 0 ) ) ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( ( m .x. Y ) ` 0 ) ) = ( I ` ( m ( .r ` K ) ( Y ` 0 ) ) ) ) | 
						
							| 55 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> K e. DivRing ) | 
						
							| 56 | 4 6 34 | frlmbasf |  |-  ( ( ( 0 ... N ) e. _V /\ Y e. ( Base ` W ) ) -> Y : ( 0 ... N ) --> S ) | 
						
							| 57 | 18 33 56 | syl2anc |  |-  ( ph -> Y : ( 0 ... N ) --> S ) | 
						
							| 58 | 57 20 | ffvelcdmd |  |-  ( ph -> ( Y ` 0 ) e. S ) | 
						
							| 59 | 58 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( Y ` 0 ) e. S ) | 
						
							| 60 |  | simpr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> m =/= .0. ) | 
						
							| 61 | 14 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( Y ` 0 ) =/= .0. ) | 
						
							| 62 | 6 7 52 8 55 49 59 60 61 | drnginvmuld |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( m ( .r ` K ) ( Y ` 0 ) ) ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ) | 
						
							| 63 | 54 62 | eqtrd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( ( m .x. Y ) ` 0 ) ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) .x. ( m .x. Y ) ) ) | 
						
							| 65 | 31 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> W e. LMod ) | 
						
							| 66 | 17 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> K e. Ring ) | 
						
							| 67 | 6 7 8 55 59 61 | drnginvrcld |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` ( Y ` 0 ) ) e. S ) | 
						
							| 68 | 6 7 8 55 49 60 | drnginvrcld |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( I ` m ) e. S ) | 
						
							| 69 | 6 52 66 67 68 | ringcld |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) e. S ) | 
						
							| 70 | 25 | fveq2d |  |-  ( ph -> ( Base ` K ) = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 71 | 6 70 | eqtrid |  |-  ( ph -> S = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 72 | 71 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> S = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 73 | 69 72 | eleqtrd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 74 | 49 72 | eleqtrd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> m e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 75 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 76 |  | eqid |  |-  ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) | 
						
							| 77 | 34 35 5 75 76 | lmodvsass |  |-  ( ( W e. LMod /\ ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) e. ( Base ` ( Scalar ` W ) ) /\ m e. ( Base ` ( Scalar ` W ) ) /\ Y e. ( Base ` W ) ) ) -> ( ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) .x. Y ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) .x. ( m .x. Y ) ) ) | 
						
							| 78 | 65 73 74 50 77 | syl13anc |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) .x. Y ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) .x. ( m .x. Y ) ) ) | 
						
							| 79 | 6 52 66 67 68 49 | ringassd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` K ) m ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( ( I ` m ) ( .r ` K ) m ) ) ) | 
						
							| 80 | 55 48 24 | syl2anc |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> K = ( Scalar ` W ) ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( .r ` K ) = ( .r ` ( Scalar ` W ) ) ) | 
						
							| 82 | 81 | oveqd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` K ) m ) = ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) ) | 
						
							| 83 |  | eqid |  |-  ( 1r ` K ) = ( 1r ` K ) | 
						
							| 84 | 6 7 52 83 8 55 49 60 | drnginvrld |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` m ) ( .r ` K ) m ) = ( 1r ` K ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( ( I ` m ) ( .r ` K ) m ) ) = ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( 1r ` K ) ) ) | 
						
							| 86 | 6 52 83 66 67 | ringridmd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( 1r ` K ) ) = ( I ` ( Y ` 0 ) ) ) | 
						
							| 87 | 85 86 | eqtrd |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( ( I ` m ) ( .r ` K ) m ) ) = ( I ` ( Y ` 0 ) ) ) | 
						
							| 88 | 79 82 87 | 3eqtr3d |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) = ( I ` ( Y ` 0 ) ) ) | 
						
							| 89 | 88 | oveq1d |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( ( ( I ` ( Y ` 0 ) ) ( .r ` K ) ( I ` m ) ) ( .r ` ( Scalar ` W ) ) m ) .x. Y ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) | 
						
							| 90 | 64 78 89 | 3eqtr2d |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) | 
						
							| 91 |  | fveq1 |  |-  ( X = ( m .x. Y ) -> ( X ` 0 ) = ( ( m .x. Y ) ` 0 ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( X = ( m .x. Y ) -> ( I ` ( X ` 0 ) ) = ( I ` ( ( m .x. Y ) ` 0 ) ) ) | 
						
							| 93 |  | id |  |-  ( X = ( m .x. Y ) -> X = ( m .x. Y ) ) | 
						
							| 94 | 92 93 | oveq12d |  |-  ( X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) ) | 
						
							| 95 | 94 | eqeq1d |  |-  ( X = ( m .x. Y ) -> ( ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) <-> ( ( I ` ( ( m .x. Y ) ` 0 ) ) .x. ( m .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 96 | 90 95 | syl5ibrcom |  |-  ( ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) /\ m =/= .0. ) -> ( X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 97 | 96 | expimpd |  |-  ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( ( m =/= .0. /\ X = ( m .x. Y ) ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 98 | 47 97 | syld |  |-  ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ m e. S ) -> ( X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 99 | 98 | rexlimdva |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( E. m e. S X = ( m .x. Y ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 100 | 99 | impr |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( ( I ` ( X ` 0 ) ) .x. X ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) | 
						
							| 101 | 13 | neneqd |  |-  ( ph -> -. ( X ` 0 ) = .0. ) | 
						
							| 102 | 101 | iffalsed |  |-  ( ph -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) | 
						
							| 104 | 14 | neneqd |  |-  ( ph -> -. ( Y ` 0 ) = .0. ) | 
						
							| 105 | 104 | iffalsed |  |-  ( ph -> if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) | 
						
							| 107 | 100 103 106 | 3eqtr4d |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) = if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 108 |  | fveq1 |  |-  ( b = X -> ( b ` 0 ) = ( X ` 0 ) ) | 
						
							| 109 | 108 | eqeq1d |  |-  ( b = X -> ( ( b ` 0 ) = .0. <-> ( X ` 0 ) = .0. ) ) | 
						
							| 110 |  | id |  |-  ( b = X -> b = X ) | 
						
							| 111 | 108 | fveq2d |  |-  ( b = X -> ( I ` ( b ` 0 ) ) = ( I ` ( X ` 0 ) ) ) | 
						
							| 112 | 111 110 | oveq12d |  |-  ( b = X -> ( ( I ` ( b ` 0 ) ) .x. b ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) | 
						
							| 113 | 109 110 112 | ifbieq12d |  |-  ( b = X -> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 114 |  | simprll |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> X e. B ) | 
						
							| 115 |  | ovexd |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( ( I ` ( X ` 0 ) ) .x. X ) e. _V ) | 
						
							| 116 | 114 115 | ifexd |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) e. _V ) | 
						
							| 117 | 2 113 114 116 | fvmptd3 |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( F ` X ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 118 |  | fveq1 |  |-  ( b = Y -> ( b ` 0 ) = ( Y ` 0 ) ) | 
						
							| 119 | 118 | eqeq1d |  |-  ( b = Y -> ( ( b ` 0 ) = .0. <-> ( Y ` 0 ) = .0. ) ) | 
						
							| 120 |  | id |  |-  ( b = Y -> b = Y ) | 
						
							| 121 | 118 | fveq2d |  |-  ( b = Y -> ( I ` ( b ` 0 ) ) = ( I ` ( Y ` 0 ) ) ) | 
						
							| 122 | 121 120 | oveq12d |  |-  ( b = Y -> ( ( I ` ( b ` 0 ) ) .x. b ) = ( ( I ` ( Y ` 0 ) ) .x. Y ) ) | 
						
							| 123 | 119 120 122 | ifbieq12d |  |-  ( b = Y -> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) = if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 124 |  | simprlr |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> Y e. B ) | 
						
							| 125 |  | ovexd |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( ( I ` ( Y ` 0 ) ) .x. Y ) e. _V ) | 
						
							| 126 | 124 125 | ifexd |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) e. _V ) | 
						
							| 127 | 2 123 124 126 | fvmptd3 |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( F ` Y ) = if ( ( Y ` 0 ) = .0. , Y , ( ( I ` ( Y ` 0 ) ) .x. Y ) ) ) | 
						
							| 128 | 107 117 127 | 3eqtr4d |  |-  ( ( ph /\ ( ( X e. B /\ Y e. B ) /\ E. m e. S X = ( m .x. Y ) ) ) -> ( F ` X ) = ( F ` Y ) ) | 
						
							| 129 | 15 128 | sylan2b |  |-  ( ( ph /\ X .~ Y ) -> ( F ` X ) = ( F ` Y ) ) | 
						
							| 130 | 1 4 3 6 5 9 | prjspner |  |-  ( ph -> .~ Er B ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> .~ Er B ) | 
						
							| 132 | 1 2 3 4 5 6 7 8 9 10 11 | prjspner01 |  |-  ( ph -> X .~ ( F ` X ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> X .~ ( F ` X ) ) | 
						
							| 134 | 130 132 | ercl2 |  |-  ( ph -> ( F ` X ) e. B ) | 
						
							| 135 | 134 | adantr |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) e. B ) | 
						
							| 136 | 131 135 | erref |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) .~ ( F ` X ) ) | 
						
							| 137 |  | breq2 |  |-  ( ( F ` X ) = ( F ` Y ) -> ( ( F ` X ) .~ ( F ` X ) <-> ( F ` X ) .~ ( F ` Y ) ) ) | 
						
							| 138 | 137 | adantl |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( ( F ` X ) .~ ( F ` X ) <-> ( F ` X ) .~ ( F ` Y ) ) ) | 
						
							| 139 | 136 138 | mpbid |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) .~ ( F ` Y ) ) | 
						
							| 140 | 1 2 3 4 5 6 7 8 9 10 12 | prjspner01 |  |-  ( ph -> Y .~ ( F ` Y ) ) | 
						
							| 141 | 140 | adantr |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> Y .~ ( F ` Y ) ) | 
						
							| 142 | 131 139 141 | ertr4d |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> ( F ` X ) .~ Y ) | 
						
							| 143 | 131 133 142 | ertrd |  |-  ( ( ph /\ ( F ` X ) = ( F ` Y ) ) -> X .~ Y ) | 
						
							| 144 | 129 143 | impbida |  |-  ( ph -> ( X .~ Y <-> ( F ` X ) = ( F ` Y ) ) ) |