| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspner01.e |  |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } | 
						
							| 2 |  | prjspner01.f |  |-  F = ( b e. B |-> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) ) | 
						
							| 3 |  | prjspner01.b |  |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } ) | 
						
							| 4 |  | prjspner01.w |  |-  W = ( K freeLMod ( 0 ... N ) ) | 
						
							| 5 |  | prjspner01.t |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | prjspner01.s |  |-  S = ( Base ` K ) | 
						
							| 7 |  | prjspner01.0 |  |-  .0. = ( 0g ` K ) | 
						
							| 8 |  | prjspner01.i |  |-  I = ( invr ` K ) | 
						
							| 9 |  | prjspner01.k |  |-  ( ph -> K e. DivRing ) | 
						
							| 10 |  | prjspner01.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 11 |  | prjspner01.x |  |-  ( ph -> X e. B ) | 
						
							| 12 | 1 4 3 6 5 9 | prjspner |  |-  ( ph -> .~ Er B ) | 
						
							| 13 | 12 11 | erref |  |-  ( ph -> X .~ X ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ ( X ` 0 ) = .0. ) -> X .~ X ) | 
						
							| 15 | 12 | adantr |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> .~ Er B ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> K e. DivRing ) | 
						
							| 17 | 11 | adantr |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> X e. B ) | 
						
							| 18 |  | ovexd |  |-  ( ph -> ( 0 ... N ) e. _V ) | 
						
							| 19 | 11 3 | eleqtrdi |  |-  ( ph -> X e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) | 
						
							| 20 | 19 | eldifad |  |-  ( ph -> X e. ( Base ` W ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 22 | 4 6 21 | frlmbasf |  |-  ( ( ( 0 ... N ) e. _V /\ X e. ( Base ` W ) ) -> X : ( 0 ... N ) --> S ) | 
						
							| 23 | 18 20 22 | syl2anc |  |-  ( ph -> X : ( 0 ... N ) --> S ) | 
						
							| 24 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 25 | 10 24 | syl |  |-  ( ph -> 0 e. ( 0 ... N ) ) | 
						
							| 26 | 23 25 | ffvelcdmd |  |-  ( ph -> ( X ` 0 ) e. S ) | 
						
							| 27 |  | neqne |  |-  ( -. ( X ` 0 ) = .0. -> ( X ` 0 ) =/= .0. ) | 
						
							| 28 | 6 7 8 | drnginvrcl |  |-  ( ( K e. DivRing /\ ( X ` 0 ) e. S /\ ( X ` 0 ) =/= .0. ) -> ( I ` ( X ` 0 ) ) e. S ) | 
						
							| 29 | 9 26 27 28 | syl2an3an |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( I ` ( X ` 0 ) ) e. S ) | 
						
							| 30 | 6 7 8 | drnginvrn0 |  |-  ( ( K e. DivRing /\ ( X ` 0 ) e. S /\ ( X ` 0 ) =/= .0. ) -> ( I ` ( X ` 0 ) ) =/= .0. ) | 
						
							| 31 | 9 26 27 30 | syl2an3an |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( I ` ( X ` 0 ) ) =/= .0. ) | 
						
							| 32 | 1 4 3 6 5 7 16 17 29 31 | prjspnvs |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( ( I ` ( X ` 0 ) ) .x. X ) .~ X ) | 
						
							| 33 | 15 32 | ersym |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> X .~ ( ( I ` ( X ` 0 ) ) .x. X ) ) | 
						
							| 34 | 14 33 | ifpimpda |  |-  ( ph -> if- ( ( X ` 0 ) = .0. , X .~ X , X .~ ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 35 |  | brif2 |  |-  ( X .~ if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) <-> if- ( ( X ` 0 ) = .0. , X .~ X , X .~ ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 36 | 34 35 | sylibr |  |-  ( ph -> X .~ if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 37 |  | fveq1 |  |-  ( b = X -> ( b ` 0 ) = ( X ` 0 ) ) | 
						
							| 38 | 37 | eqeq1d |  |-  ( b = X -> ( ( b ` 0 ) = .0. <-> ( X ` 0 ) = .0. ) ) | 
						
							| 39 |  | id |  |-  ( b = X -> b = X ) | 
						
							| 40 | 37 | fveq2d |  |-  ( b = X -> ( I ` ( b ` 0 ) ) = ( I ` ( X ` 0 ) ) ) | 
						
							| 41 | 40 39 | oveq12d |  |-  ( b = X -> ( ( I ` ( b ` 0 ) ) .x. b ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) | 
						
							| 42 | 38 39 41 | ifbieq12d |  |-  ( b = X -> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 43 |  | ovexd |  |-  ( ph -> ( ( I ` ( X ` 0 ) ) .x. X ) e. _V ) | 
						
							| 44 | 11 43 | ifexd |  |-  ( ph -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) e. _V ) | 
						
							| 45 | 2 42 11 44 | fvmptd3 |  |-  ( ph -> ( F ` X ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 46 | 36 45 | breqtrrd |  |-  ( ph -> X .~ ( F ` X ) ) |