Step |
Hyp |
Ref |
Expression |
1 |
|
prjspnvs.e |
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. S x = ( l .x. y ) ) } |
2 |
|
prjspnvs.w |
|- W = ( K freeLMod ( 0 ... N ) ) |
3 |
|
prjspnvs.b |
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } ) |
4 |
|
prjspnvs.s |
|- S = ( Base ` K ) |
5 |
|
prjspnvs.x |
|- .x. = ( .s ` W ) |
6 |
|
prjspnvs.0 |
|- .0. = ( 0g ` K ) |
7 |
|
prjspnvs.k |
|- ( ph -> K e. DivRing ) |
8 |
|
prjspnvs.1 |
|- ( ph -> X e. B ) |
9 |
|
prjspnvs.2 |
|- ( ph -> C e. S ) |
10 |
|
prjspnvs.3 |
|- ( ph -> C =/= .0. ) |
11 |
|
ovexd |
|- ( ph -> ( 0 ... N ) e. _V ) |
12 |
2
|
frlmlvec |
|- ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> W e. LVec ) |
13 |
7 11 12
|
syl2anc |
|- ( ph -> W e. LVec ) |
14 |
|
nelsn |
|- ( C =/= .0. -> -. C e. { .0. } ) |
15 |
10 14
|
syl |
|- ( ph -> -. C e. { .0. } ) |
16 |
9 15
|
eldifd |
|- ( ph -> C e. ( S \ { .0. } ) ) |
17 |
2
|
frlmsca |
|- ( ( K e. DivRing /\ ( 0 ... N ) e. _V ) -> K = ( Scalar ` W ) ) |
18 |
7 11 17
|
syl2anc |
|- ( ph -> K = ( Scalar ` W ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( Base ` K ) = ( Base ` ( Scalar ` W ) ) ) |
20 |
4 19
|
syl5eq |
|- ( ph -> S = ( Base ` ( Scalar ` W ) ) ) |
21 |
18
|
fveq2d |
|- ( ph -> ( 0g ` K ) = ( 0g ` ( Scalar ` W ) ) ) |
22 |
6 21
|
syl5eq |
|- ( ph -> .0. = ( 0g ` ( Scalar ` W ) ) ) |
23 |
22
|
sneqd |
|- ( ph -> { .0. } = { ( 0g ` ( Scalar ` W ) ) } ) |
24 |
20 23
|
difeq12d |
|- ( ph -> ( S \ { .0. } ) = ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
25 |
16 24
|
eleqtrd |
|- ( ph -> C e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
26 |
|
eqid |
|- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } |
27 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
28 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
29 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
30 |
26 3 27 5 28 29
|
prjspvs |
|- ( ( W e. LVec /\ X e. B /\ C e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( C .x. X ) { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } X ) |
31 |
13 8 25 30
|
syl3anc |
|- ( ph -> ( C .x. X ) { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } X ) |
32 |
1 2 3 4 5
|
prjspnerlem |
|- ( K e. DivRing -> .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) |
33 |
7 32
|
syl |
|- ( ph -> .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } ) |
34 |
33
|
breqd |
|- ( ph -> ( ( C .x. X ) .~ X <-> ( C .x. X ) { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` W ) ) x = ( l .x. y ) ) } X ) ) |
35 |
31 34
|
mpbird |
|- ( ph -> ( C .x. X ) .~ X ) |