| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjsprel.1 |
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } |
| 2 |
|
prjspertr.b |
|- B = ( ( Base ` V ) \ { ( 0g ` V ) } ) |
| 3 |
|
prjspertr.s |
|- S = ( Scalar ` V ) |
| 4 |
|
prjspertr.x |
|- .x. = ( .s ` V ) |
| 5 |
|
prjspertr.k |
|- K = ( Base ` S ) |
| 6 |
|
prjspreln0.z |
|- .0. = ( 0g ` S ) |
| 7 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
| 8 |
|
lveclmod |
|- ( V e. LVec -> V e. LMod ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> V e. LMod ) |
| 10 |
|
eldifi |
|- ( N e. ( K \ { .0. } ) -> N e. K ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> N e. K ) |
| 12 |
|
difss |
|- ( ( Base ` V ) \ { ( 0g ` V ) } ) C_ ( Base ` V ) |
| 13 |
2 12
|
eqsstri |
|- B C_ ( Base ` V ) |
| 14 |
13
|
sseli |
|- ( X e. B -> X e. ( Base ` V ) ) |
| 15 |
14
|
3ad2ant2 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> X e. ( Base ` V ) ) |
| 16 |
7 3 4 5 9 11 15
|
lmodvscld |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) e. ( Base ` V ) ) |
| 17 |
|
eldifsni |
|- ( N e. ( K \ { .0. } ) -> N =/= .0. ) |
| 18 |
17
|
3ad2ant3 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> N =/= .0. ) |
| 19 |
|
eldifsni |
|- ( X e. ( ( Base ` V ) \ { ( 0g ` V ) } ) -> X =/= ( 0g ` V ) ) |
| 20 |
19 2
|
eleq2s |
|- ( X e. B -> X =/= ( 0g ` V ) ) |
| 21 |
20
|
3ad2ant2 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> X =/= ( 0g ` V ) ) |
| 22 |
|
eqid |
|- ( 0g ` V ) = ( 0g ` V ) |
| 23 |
|
simp1 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> V e. LVec ) |
| 24 |
7 4 3 5 6 22 23 11 15
|
lvecvsn0 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( ( N .x. X ) =/= ( 0g ` V ) <-> ( N =/= .0. /\ X =/= ( 0g ` V ) ) ) ) |
| 25 |
18 21 24
|
mpbir2and |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) =/= ( 0g ` V ) ) |
| 26 |
16 25
|
eldifsnd |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) e. ( ( Base ` V ) \ { ( 0g ` V ) } ) ) |
| 27 |
26 2
|
eleqtrrdi |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) e. B ) |
| 28 |
|
simp2 |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> X e. B ) |
| 29 |
|
oveq1 |
|- ( N = m -> ( N .x. X ) = ( m .x. X ) ) |
| 30 |
29
|
eqcoms |
|- ( m = N -> ( N .x. X ) = ( m .x. X ) ) |
| 31 |
|
tbtru |
|- ( ( N .x. X ) = ( m .x. X ) <-> ( ( N .x. X ) = ( m .x. X ) <-> T. ) ) |
| 32 |
30 31
|
sylib |
|- ( m = N -> ( ( N .x. X ) = ( m .x. X ) <-> T. ) ) |
| 33 |
|
trud |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> T. ) |
| 34 |
32 11 33
|
rspcedvdw |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> E. m e. K ( N .x. X ) = ( m .x. X ) ) |
| 35 |
1
|
prjsprel |
|- ( ( N .x. X ) .~ X <-> ( ( ( N .x. X ) e. B /\ X e. B ) /\ E. m e. K ( N .x. X ) = ( m .x. X ) ) ) |
| 36 |
27 28 34 35
|
syl21anbrc |
|- ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) .~ X ) |