| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 |  |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } | 
						
							| 2 |  | prjspertr.b |  |-  B = ( ( Base ` V ) \ { ( 0g ` V ) } ) | 
						
							| 3 |  | prjspertr.s |  |-  S = ( Scalar ` V ) | 
						
							| 4 |  | prjspertr.x |  |-  .x. = ( .s ` V ) | 
						
							| 5 |  | prjspertr.k |  |-  K = ( Base ` S ) | 
						
							| 6 |  | prjspreln0.z |  |-  .0. = ( 0g ` S ) | 
						
							| 7 |  | eqid |  |-  ( Base ` V ) = ( Base ` V ) | 
						
							| 8 |  | lveclmod |  |-  ( V e. LVec -> V e. LMod ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> V e. LMod ) | 
						
							| 10 |  | eldifi |  |-  ( N e. ( K \ { .0. } ) -> N e. K ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> N e. K ) | 
						
							| 12 |  | difss |  |-  ( ( Base ` V ) \ { ( 0g ` V ) } ) C_ ( Base ` V ) | 
						
							| 13 | 2 12 | eqsstri |  |-  B C_ ( Base ` V ) | 
						
							| 14 | 13 | sseli |  |-  ( X e. B -> X e. ( Base ` V ) ) | 
						
							| 15 | 14 | 3ad2ant2 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> X e. ( Base ` V ) ) | 
						
							| 16 | 7 3 4 5 9 11 15 | lmodvscld |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) e. ( Base ` V ) ) | 
						
							| 17 |  | eldifsni |  |-  ( N e. ( K \ { .0. } ) -> N =/= .0. ) | 
						
							| 18 | 17 | 3ad2ant3 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> N =/= .0. ) | 
						
							| 19 |  | eldifsni |  |-  ( X e. ( ( Base ` V ) \ { ( 0g ` V ) } ) -> X =/= ( 0g ` V ) ) | 
						
							| 20 | 19 2 | eleq2s |  |-  ( X e. B -> X =/= ( 0g ` V ) ) | 
						
							| 21 | 20 | 3ad2ant2 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> X =/= ( 0g ` V ) ) | 
						
							| 22 |  | eqid |  |-  ( 0g ` V ) = ( 0g ` V ) | 
						
							| 23 |  | simp1 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> V e. LVec ) | 
						
							| 24 | 7 4 3 5 6 22 23 11 15 | lvecvsn0 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( ( N .x. X ) =/= ( 0g ` V ) <-> ( N =/= .0. /\ X =/= ( 0g ` V ) ) ) ) | 
						
							| 25 | 18 21 24 | mpbir2and |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) =/= ( 0g ` V ) ) | 
						
							| 26 | 16 25 | eldifsnd |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) e. ( ( Base ` V ) \ { ( 0g ` V ) } ) ) | 
						
							| 27 | 26 2 | eleqtrrdi |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) e. B ) | 
						
							| 28 |  | simp2 |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> X e. B ) | 
						
							| 29 |  | oveq1 |  |-  ( N = m -> ( N .x. X ) = ( m .x. X ) ) | 
						
							| 30 | 29 | eqcoms |  |-  ( m = N -> ( N .x. X ) = ( m .x. X ) ) | 
						
							| 31 |  | tbtru |  |-  ( ( N .x. X ) = ( m .x. X ) <-> ( ( N .x. X ) = ( m .x. X ) <-> T. ) ) | 
						
							| 32 | 30 31 | sylib |  |-  ( m = N -> ( ( N .x. X ) = ( m .x. X ) <-> T. ) ) | 
						
							| 33 |  | trud |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> T. ) | 
						
							| 34 | 32 11 33 | rspcedvdw |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> E. m e. K ( N .x. X ) = ( m .x. X ) ) | 
						
							| 35 | 1 | prjsprel |  |-  ( ( N .x. X ) .~ X <-> ( ( ( N .x. X ) e. B /\ X e. B ) /\ E. m e. K ( N .x. X ) = ( m .x. X ) ) ) | 
						
							| 36 | 27 28 34 35 | syl21anbrc |  |-  ( ( V e. LVec /\ X e. B /\ N e. ( K \ { .0. } ) ) -> ( N .x. X ) .~ X ) |