Metamath Proof Explorer


Theorem prjspnssbas

Description: A projective point spans a subset of the (nonzero) affine points. (Contributed by SN, 17-Jan-2025)

Ref Expression
Hypotheses prjspnssbas.p
|- P = ( N PrjSpn K )
prjspnssbas.w
|- W = ( K freeLMod ( 0 ... N ) )
prjspnssbas.b
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } )
prjspnssbas.n
|- ( ph -> N e. NN0 )
prjspnssbas.k
|- ( ph -> K e. DivRing )
Assertion prjspnssbas
|- ( ph -> P C_ ~P B )

Proof

Step Hyp Ref Expression
1 prjspnssbas.p
 |-  P = ( N PrjSpn K )
2 prjspnssbas.w
 |-  W = ( K freeLMod ( 0 ... N ) )
3 prjspnssbas.b
 |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } )
4 prjspnssbas.n
 |-  ( ph -> N e. NN0 )
5 prjspnssbas.k
 |-  ( ph -> K e. DivRing )
6 eqid
 |-  { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) }
7 eqid
 |-  ( Base ` K ) = ( Base ` K )
8 eqid
 |-  ( .s ` W ) = ( .s ` W )
9 6 2 3 7 8 prjspnval2
 |-  ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) )
10 4 5 9 syl2anc
 |-  ( ph -> ( N PrjSpn K ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) )
11 1 10 eqtrid
 |-  ( ph -> P = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) )
12 6 2 3 7 8 5 prjspner
 |-  ( ph -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } Er B )
13 12 qsss
 |-  ( ph -> ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) C_ ~P B )
14 11 13 eqsstrd
 |-  ( ph -> P C_ ~P B )