| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnssbas.p |  |-  P = ( N PrjSpn K ) | 
						
							| 2 |  | prjspnssbas.w |  |-  W = ( K freeLMod ( 0 ... N ) ) | 
						
							| 3 |  | prjspnssbas.b |  |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } ) | 
						
							| 4 |  | prjspnssbas.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | prjspnssbas.k |  |-  ( ph -> K e. DivRing ) | 
						
							| 6 |  | prjspnn0.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | eqid |  |-  { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } | 
						
							| 8 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 9 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 10 | 7 2 3 8 9 5 | prjspner |  |-  ( ph -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } Er B ) | 
						
							| 11 |  | erdm |  |-  ( { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } Er B -> dom { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = B ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> dom { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = B ) | 
						
							| 13 | 7 2 3 8 9 | prjspnval2 |  |-  ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) | 
						
							| 14 | 4 5 13 | syl2anc |  |-  ( ph -> ( N PrjSpn K ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) | 
						
							| 15 | 1 14 | eqtrid |  |-  ( ph -> P = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) | 
						
							| 16 | 6 15 | eleqtrd |  |-  ( ph -> A e. ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) | 
						
							| 17 |  | elqsn0 |  |-  ( ( dom { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = B /\ A e. ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) -> A =/= (/) ) | 
						
							| 18 | 12 16 17 | syl2anc |  |-  ( ph -> A =/= (/) ) |