Step |
Hyp |
Ref |
Expression |
1 |
|
prjspnssbas.p |
|- P = ( N PrjSpn K ) |
2 |
|
prjspnssbas.w |
|- W = ( K freeLMod ( 0 ... N ) ) |
3 |
|
prjspnssbas.b |
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } ) |
4 |
|
prjspnssbas.n |
|- ( ph -> N e. NN0 ) |
5 |
|
prjspnssbas.k |
|- ( ph -> K e. DivRing ) |
6 |
|
prjspnn0.a |
|- ( ph -> A e. P ) |
7 |
|
eqid |
|- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
10 |
7 2 3 8 9 5
|
prjspner |
|- ( ph -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } Er B ) |
11 |
|
erdm |
|- ( { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } Er B -> dom { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = B ) |
12 |
10 11
|
syl |
|- ( ph -> dom { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = B ) |
13 |
7 2 3 8 9
|
prjspnval2 |
|- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) |
14 |
4 5 13
|
syl2anc |
|- ( ph -> ( N PrjSpn K ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) |
15 |
1 14
|
eqtrid |
|- ( ph -> P = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) |
16 |
6 15
|
eleqtrd |
|- ( ph -> A e. ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) |
17 |
|
elqsn0 |
|- ( ( dom { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } = B /\ A e. ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` K ) x = ( l ( .s ` W ) y ) ) } ) ) -> A =/= (/) ) |
18 |
12 16 17
|
syl2anc |
|- ( ph -> A =/= (/) ) |