| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnssbas.p | ⊢ 𝑃  =  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) | 
						
							| 2 |  | prjspnssbas.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) | 
						
							| 3 |  | prjspnssbas.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 4 |  | prjspnssbas.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | prjspnssbas.k | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 6 |  | prjspnn0.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 10 | 7 2 3 8 9 5 | prjspner | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  Er  𝐵 ) | 
						
							| 11 |  | erdm | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  Er  𝐵  →  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  𝐵 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  𝐵 ) | 
						
							| 13 | 7 2 3 8 9 | prjspnval2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  DivRing )  →  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) ) | 
						
							| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) ) | 
						
							| 15 | 1 14 | eqtrid | ⊢ ( 𝜑  →  𝑃  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) ) | 
						
							| 16 | 6 15 | eleqtrd | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) ) | 
						
							| 17 |  | elqsn0 | ⊢ ( ( dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  𝐵  ∧  𝐴  ∈  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) )  →  𝐴  ≠  ∅ ) | 
						
							| 18 | 12 16 17 | syl2anc | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) |