Step |
Hyp |
Ref |
Expression |
1 |
|
prjspnval2.e |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
prjspnval2.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) |
3 |
|
prjspnval2.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
4 |
|
prjspnval2.s |
⊢ 𝑆 = ( Base ‘ 𝐾 ) |
5 |
|
prjspnval2.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
prjspnval |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
7 |
2
|
fveq2i |
⊢ ( ℙ𝕣𝕠𝕛 ‘ 𝑊 ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) |
8 |
|
ovex |
⊢ ( 0 ... 𝑁 ) ∈ V |
9 |
2
|
frlmlvec |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 𝑁 ) ∈ V ) → 𝑊 ∈ LVec ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝐾 ∈ DivRing → 𝑊 ∈ LVec ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
3 5 11 12
|
prjspval |
⊢ ( 𝑊 ∈ LVec → ( ℙ𝕣𝕠𝕛 ‘ 𝑊 ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } ) ) |
14 |
10 13
|
syl |
⊢ ( 𝐾 ∈ DivRing → ( ℙ𝕣𝕠𝕛 ‘ 𝑊 ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } ) ) |
15 |
1 2 3 4 5
|
prjspnerlem |
⊢ ( 𝐾 ∈ DivRing → ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } ) |
16 |
15
|
qseq2d |
⊢ ( 𝐾 ∈ DivRing → ( 𝐵 / ∼ ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 · 𝑦 ) ) } ) ) |
17 |
14 16
|
eqtr4d |
⊢ ( 𝐾 ∈ DivRing → ( ℙ𝕣𝕠𝕛 ‘ 𝑊 ) = ( 𝐵 / ∼ ) ) |
18 |
7 17
|
eqtr3id |
⊢ ( 𝐾 ∈ DivRing → ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) = ( 𝐵 / ∼ ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing ) → ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) = ( 𝐵 / ∼ ) ) |
20 |
6 19
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ( 𝐵 / ∼ ) ) |