| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnval2.e | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝑆 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspnval2.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) | 
						
							| 3 |  | prjspnval2.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 4 |  | prjspnval2.s | ⊢ 𝑆  =  ( Base ‘ 𝐾 ) | 
						
							| 5 |  | prjspnval2.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | prjspnval | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  DivRing )  →  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )  =  ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 7 | 2 | fveq2i | ⊢ ( ℙ𝕣𝕠𝕛 ‘ 𝑊 )  =  ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) ) | 
						
							| 8 |  | ovex | ⊢ ( 0 ... 𝑁 )  ∈  V | 
						
							| 9 | 2 | frlmlvec | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 𝑁 )  ∈  V )  →  𝑊  ∈  LVec ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( 𝐾  ∈  DivRing  →  𝑊  ∈  LVec ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 13 | 3 5 11 12 | prjspval | ⊢ ( 𝑊  ∈  LVec  →  ( ℙ𝕣𝕠𝕛 ‘ 𝑊 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) ) | 
						
							| 14 | 10 13 | syl | ⊢ ( 𝐾  ∈  DivRing  →  ( ℙ𝕣𝕠𝕛 ‘ 𝑊 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) ) | 
						
							| 15 | 1 2 3 4 5 | prjspnerlem | ⊢ ( 𝐾  ∈  DivRing  →   ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) | 
						
							| 16 | 15 | qseq2d | ⊢ ( 𝐾  ∈  DivRing  →  ( 𝐵  /   ∼  )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) ) | 
						
							| 17 | 14 16 | eqtr4d | ⊢ ( 𝐾  ∈  DivRing  →  ( ℙ𝕣𝕠𝕛 ‘ 𝑊 )  =  ( 𝐵  /   ∼  ) ) | 
						
							| 18 | 7 17 | eqtr3id | ⊢ ( 𝐾  ∈  DivRing  →  ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) )  =  ( 𝐵  /   ∼  ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  DivRing )  →  ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) )  =  ( 𝐵  /   ∼  ) ) | 
						
							| 20 | 6 19 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  DivRing )  →  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )  =  ( 𝐵  /   ∼  ) ) |