Metamath Proof Explorer


Theorem prjspnval2

Description: Value of the n-dimensional projective space function, expanded. (Contributed by Steven Nguyen, 15-Jul-2023)

Ref Expression
Hypotheses prjspnval2.e ˙=xy|xByBlSx=l·˙y
prjspnval2.w W=KfreeLMod0N
prjspnval2.b B=BaseW0W
prjspnval2.s S=BaseK
prjspnval2.x ·˙=W
Assertion prjspnval2 N0KDivRingNℙ𝕣𝕠𝕛nK=B/˙

Proof

Step Hyp Ref Expression
1 prjspnval2.e ˙=xy|xByBlSx=l·˙y
2 prjspnval2.w W=KfreeLMod0N
3 prjspnval2.b B=BaseW0W
4 prjspnval2.s S=BaseK
5 prjspnval2.x ·˙=W
6 prjspnval N0KDivRingNℙ𝕣𝕠𝕛nK=ℙ𝕣𝕠𝕛KfreeLMod0N
7 2 fveq2i ℙ𝕣𝕠𝕛W=ℙ𝕣𝕠𝕛KfreeLMod0N
8 ovex 0NV
9 2 frlmlvec KDivRing0NVWLVec
10 8 9 mpan2 KDivRingWLVec
11 eqid ScalarW=ScalarW
12 eqid BaseScalarW=BaseScalarW
13 3 5 11 12 prjspval WLVecℙ𝕣𝕠𝕛W=B/xy|xByBlBaseScalarWx=l·˙y
14 10 13 syl KDivRingℙ𝕣𝕠𝕛W=B/xy|xByBlBaseScalarWx=l·˙y
15 1 2 3 4 5 prjspnerlem KDivRing˙=xy|xByBlBaseScalarWx=l·˙y
16 15 qseq2d KDivRingB/˙=B/xy|xByBlBaseScalarWx=l·˙y
17 14 16 eqtr4d KDivRingℙ𝕣𝕠𝕛W=B/˙
18 7 17 eqtr3id KDivRingℙ𝕣𝕠𝕛KfreeLMod0N=B/˙
19 18 adantl N0KDivRingℙ𝕣𝕠𝕛KfreeLMod0N=B/˙
20 6 19 eqtrd N0KDivRingNℙ𝕣𝕠𝕛nK=B/˙