Metamath Proof Explorer


Theorem prjspner

Description: The relation used to define PrjSp (and indirectly PrjSpn through df-prjspn ) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr and prjspersym (see prjspnerlem ). Several theorems are covered in one thanks to the theorems around df-er . (Contributed by SN, 14-Aug-2023)

Ref Expression
Hypotheses prjspner.e ˙=xy|xByBlSx=l·˙y
prjspner.w W=KfreeLMod0N
prjspner.b B=BaseW0W
prjspner.s S=BaseK
prjspner.x ·˙=W
prjspner.k φKDivRing
Assertion prjspner φ˙ErB

Proof

Step Hyp Ref Expression
1 prjspner.e ˙=xy|xByBlSx=l·˙y
2 prjspner.w W=KfreeLMod0N
3 prjspner.b B=BaseW0W
4 prjspner.s S=BaseK
5 prjspner.x ·˙=W
6 prjspner.k φKDivRing
7 ovexd φ0NV
8 2 frlmlvec KDivRing0NVWLVec
9 6 7 8 syl2anc φWLVec
10 eqid xy|xByBlBaseScalarWx=l·˙y=xy|xByBlBaseScalarWx=l·˙y
11 eqid ScalarW=ScalarW
12 eqid BaseScalarW=BaseScalarW
13 10 3 11 5 12 prjsper WLVecxy|xByBlBaseScalarWx=l·˙yErB
14 9 13 syl φxy|xByBlBaseScalarWx=l·˙yErB
15 1 2 3 4 5 prjspnerlem KDivRing˙=xy|xByBlBaseScalarWx=l·˙y
16 ereq1 ˙=xy|xByBlBaseScalarWx=l·˙y˙ErBxy|xByBlBaseScalarWx=l·˙yErB
17 6 15 16 3syl φ˙ErBxy|xByBlBaseScalarWx=l·˙yErB
18 14 17 mpbird φ˙ErB