Metamath Proof Explorer


Theorem prjspnvs

Description: A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs (see prjspnerlem ). (Contributed by SN, 8-Aug-2024)

Ref Expression
Hypotheses prjspnvs.e ˙=xy|xByBlSx=l·˙y
prjspnvs.w W=KfreeLMod0N
prjspnvs.b B=BaseW0W
prjspnvs.s S=BaseK
prjspnvs.x ·˙=W
prjspnvs.0 0˙=0K
prjspnvs.k φKDivRing
prjspnvs.1 φXB
prjspnvs.2 φCS
prjspnvs.3 φC0˙
Assertion prjspnvs φC·˙X˙X

Proof

Step Hyp Ref Expression
1 prjspnvs.e ˙=xy|xByBlSx=l·˙y
2 prjspnvs.w W=KfreeLMod0N
3 prjspnvs.b B=BaseW0W
4 prjspnvs.s S=BaseK
5 prjspnvs.x ·˙=W
6 prjspnvs.0 0˙=0K
7 prjspnvs.k φKDivRing
8 prjspnvs.1 φXB
9 prjspnvs.2 φCS
10 prjspnvs.3 φC0˙
11 ovexd φ0NV
12 2 frlmlvec KDivRing0NVWLVec
13 7 11 12 syl2anc φWLVec
14 nelsn C0˙¬C0˙
15 10 14 syl φ¬C0˙
16 9 15 eldifd φCS0˙
17 2 frlmsca KDivRing0NVK=ScalarW
18 7 11 17 syl2anc φK=ScalarW
19 18 fveq2d φBaseK=BaseScalarW
20 4 19 eqtrid φS=BaseScalarW
21 18 fveq2d φ0K=0ScalarW
22 6 21 eqtrid φ0˙=0ScalarW
23 22 sneqd φ0˙=0ScalarW
24 20 23 difeq12d φS0˙=BaseScalarW0ScalarW
25 16 24 eleqtrd φCBaseScalarW0ScalarW
26 eqid xy|xByBlBaseScalarWx=l·˙y=xy|xByBlBaseScalarWx=l·˙y
27 eqid ScalarW=ScalarW
28 eqid BaseScalarW=BaseScalarW
29 eqid 0ScalarW=0ScalarW
30 26 3 27 5 28 29 prjspvs WLVecXBCBaseScalarW0ScalarWC·˙Xxy|xByBlBaseScalarWx=l·˙yX
31 13 8 25 30 syl3anc φC·˙Xxy|xByBlBaseScalarWx=l·˙yX
32 1 2 3 4 5 prjspnerlem KDivRing˙=xy|xByBlBaseScalarWx=l·˙y
33 7 32 syl φ˙=xy|xByBlBaseScalarWx=l·˙y
34 33 breqd φC·˙X˙XC·˙Xxy|xByBlBaseScalarWx=l·˙yX
35 31 34 mpbird φC·˙X˙X