| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0prjspnlem.b |
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } ) |
| 2 |
|
0prjspnlem.w |
|- W = ( K freeLMod ( 0 ... 0 ) ) |
| 3 |
|
0prjspnlem.1 |
|- .1. = ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) |
| 4 |
|
drngnzr |
|- ( K e. DivRing -> K e. NzRing ) |
| 5 |
|
ovex |
|- ( 0 ... 0 ) e. _V |
| 6 |
|
c0ex |
|- 0 e. _V |
| 7 |
6
|
snid |
|- 0 e. { 0 } |
| 8 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
| 9 |
7 8
|
eleqtrri |
|- 0 e. ( 0 ... 0 ) |
| 10 |
|
nzrring |
|- ( K e. NzRing -> K e. Ring ) |
| 11 |
|
eqid |
|- ( K unitVec ( 0 ... 0 ) ) = ( K unitVec ( 0 ... 0 ) ) |
| 12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 13 |
11 2 12
|
uvccl |
|- ( ( K e. Ring /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) ) |
| 14 |
10 13
|
syl3an1 |
|- ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) ) |
| 15 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 16 |
11 2 12 15
|
uvcn0 |
|- ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) =/= ( 0g ` W ) ) |
| 17 |
|
eldifsn |
|- ( ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) <-> ( ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) /\ ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) =/= ( 0g ` W ) ) ) |
| 18 |
14 16 17
|
sylanbrc |
|- ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) |
| 19 |
5 9 18
|
mp3an23 |
|- ( K e. NzRing -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) |
| 20 |
4 19
|
syl |
|- ( K e. DivRing -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) |
| 21 |
20 3 1
|
3eltr4g |
|- ( K e. DivRing -> .1. e. B ) |