Metamath Proof Explorer


Theorem 0prjspnlem

Description: Lemma for 0prjspn . The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023)

Ref Expression
Hypotheses 0prjspnlem.b
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } )
0prjspnlem.w
|- W = ( K freeLMod ( 0 ... 0 ) )
0prjspnlem.1
|- .1. = ( ( K unitVec ( 0 ... 0 ) ) ` 0 )
Assertion 0prjspnlem
|- ( K e. DivRing -> .1. e. B )

Proof

Step Hyp Ref Expression
1 0prjspnlem.b
 |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } )
2 0prjspnlem.w
 |-  W = ( K freeLMod ( 0 ... 0 ) )
3 0prjspnlem.1
 |-  .1. = ( ( K unitVec ( 0 ... 0 ) ) ` 0 )
4 drngnzr
 |-  ( K e. DivRing -> K e. NzRing )
5 ovex
 |-  ( 0 ... 0 ) e. _V
6 c0ex
 |-  0 e. _V
7 6 snid
 |-  0 e. { 0 }
8 fz0sn
 |-  ( 0 ... 0 ) = { 0 }
9 7 8 eleqtrri
 |-  0 e. ( 0 ... 0 )
10 nzrring
 |-  ( K e. NzRing -> K e. Ring )
11 eqid
 |-  ( K unitVec ( 0 ... 0 ) ) = ( K unitVec ( 0 ... 0 ) )
12 eqid
 |-  ( Base ` W ) = ( Base ` W )
13 11 2 12 uvccl
 |-  ( ( K e. Ring /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) )
14 10 13 syl3an1
 |-  ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) )
15 eqid
 |-  ( 0g ` W ) = ( 0g ` W )
16 11 2 12 15 uvcn0
 |-  ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) =/= ( 0g ` W ) )
17 eldifsn
 |-  ( ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) <-> ( ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) /\ ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) =/= ( 0g ` W ) ) )
18 14 16 17 sylanbrc
 |-  ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) )
19 5 9 18 mp3an23
 |-  ( K e. NzRing -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) )
20 4 19 syl
 |-  ( K e. DivRing -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) )
21 20 3 1 3eltr4g
 |-  ( K e. DivRing -> .1. e. B )