| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0prjspnlem.b |  |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } ) | 
						
							| 2 |  | 0prjspnlem.w |  |-  W = ( K freeLMod ( 0 ... 0 ) ) | 
						
							| 3 |  | 0prjspnlem.1 |  |-  .1. = ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) | 
						
							| 4 |  | drngnzr |  |-  ( K e. DivRing -> K e. NzRing ) | 
						
							| 5 |  | ovex |  |-  ( 0 ... 0 ) e. _V | 
						
							| 6 |  | c0ex |  |-  0 e. _V | 
						
							| 7 | 6 | snid |  |-  0 e. { 0 } | 
						
							| 8 |  | fz0sn |  |-  ( 0 ... 0 ) = { 0 } | 
						
							| 9 | 7 8 | eleqtrri |  |-  0 e. ( 0 ... 0 ) | 
						
							| 10 |  | nzrring |  |-  ( K e. NzRing -> K e. Ring ) | 
						
							| 11 |  | eqid |  |-  ( K unitVec ( 0 ... 0 ) ) = ( K unitVec ( 0 ... 0 ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 13 | 11 2 12 | uvccl |  |-  ( ( K e. Ring /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) ) | 
						
							| 14 | 10 13 | syl3an1 |  |-  ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) ) | 
						
							| 15 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 16 | 11 2 12 15 | uvcn0 |  |-  ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) =/= ( 0g ` W ) ) | 
						
							| 17 |  | eldifsn |  |-  ( ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) <-> ( ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( Base ` W ) /\ ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) =/= ( 0g ` W ) ) ) | 
						
							| 18 | 14 16 17 | sylanbrc |  |-  ( ( K e. NzRing /\ ( 0 ... 0 ) e. _V /\ 0 e. ( 0 ... 0 ) ) -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) | 
						
							| 19 | 5 9 18 | mp3an23 |  |-  ( K e. NzRing -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) | 
						
							| 20 | 4 19 | syl |  |-  ( K e. DivRing -> ( ( K unitVec ( 0 ... 0 ) ) ` 0 ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) | 
						
							| 21 | 20 3 1 | 3eltr4g |  |-  ( K e. DivRing -> .1. e. B ) |