| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnfv01.f |  |-  F = ( b e. B |-> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) ) | 
						
							| 2 |  | prjspnfv01.b |  |-  B = ( ( Base ` W ) \ { ( 0g ` W ) } ) | 
						
							| 3 |  | prjspnfv01.w |  |-  W = ( K freeLMod ( 0 ... N ) ) | 
						
							| 4 |  | prjspnfv01.t |  |-  .x. = ( .s ` W ) | 
						
							| 5 |  | prjspnfv01.0 |  |-  .0. = ( 0g ` K ) | 
						
							| 6 |  | prjspnfv01.1 |  |-  .1. = ( 1r ` K ) | 
						
							| 7 |  | prjspnfv01.i |  |-  I = ( invr ` K ) | 
						
							| 8 |  | prjspnfv01.k |  |-  ( ph -> K e. DivRing ) | 
						
							| 9 |  | prjspnfv01.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 10 |  | prjspnfv01.x |  |-  ( ph -> X e. B ) | 
						
							| 11 |  | fveq1 |  |-  ( b = X -> ( b ` 0 ) = ( X ` 0 ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( b = X -> ( ( b ` 0 ) = .0. <-> ( X ` 0 ) = .0. ) ) | 
						
							| 13 |  | id |  |-  ( b = X -> b = X ) | 
						
							| 14 | 11 | fveq2d |  |-  ( b = X -> ( I ` ( b ` 0 ) ) = ( I ` ( X ` 0 ) ) ) | 
						
							| 15 | 14 13 | oveq12d |  |-  ( b = X -> ( ( I ` ( b ` 0 ) ) .x. b ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) | 
						
							| 16 | 12 13 15 | ifbieq12d |  |-  ( b = X -> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 17 |  | ovexd |  |-  ( ph -> ( ( I ` ( X ` 0 ) ) .x. X ) e. _V ) | 
						
							| 18 | 10 17 | ifexd |  |-  ( ph -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) e. _V ) | 
						
							| 19 | 1 16 10 18 | fvmptd3 |  |-  ( ph -> ( F ` X ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) | 
						
							| 20 | 19 | fveq1d |  |-  ( ph -> ( ( F ` X ) ` 0 ) = ( if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ` 0 ) ) | 
						
							| 21 |  | iffv |  |-  ( if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ` 0 ) = if ( ( X ` 0 ) = .0. , ( X ` 0 ) , ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) ) | 
						
							| 22 | 21 | a1i |  |-  ( ph -> ( if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ` 0 ) = if ( ( X ` 0 ) = .0. , ( X ` 0 ) , ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ ( X ` 0 ) = .0. ) -> ( X ` 0 ) = .0. ) | 
						
							| 24 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 25 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 26 |  | ovexd |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( 0 ... N ) e. _V ) | 
						
							| 27 |  | ovexd |  |-  ( ph -> ( 0 ... N ) e. _V ) | 
						
							| 28 | 10 2 | eleqtrdi |  |-  ( ph -> X e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) | 
						
							| 29 | 28 | eldifad |  |-  ( ph -> X e. ( Base ` W ) ) | 
						
							| 30 | 3 25 24 | frlmbasf |  |-  ( ( ( 0 ... N ) e. _V /\ X e. ( Base ` W ) ) -> X : ( 0 ... N ) --> ( Base ` K ) ) | 
						
							| 31 | 27 29 30 | syl2anc |  |-  ( ph -> X : ( 0 ... N ) --> ( Base ` K ) ) | 
						
							| 32 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 33 | 9 32 | syl |  |-  ( ph -> 0 e. ( 0 ... N ) ) | 
						
							| 34 | 31 33 | ffvelcdmd |  |-  ( ph -> ( X ` 0 ) e. ( Base ` K ) ) | 
						
							| 35 |  | neqne |  |-  ( -. ( X ` 0 ) = .0. -> ( X ` 0 ) =/= .0. ) | 
						
							| 36 | 25 5 7 | drnginvrcl |  |-  ( ( K e. DivRing /\ ( X ` 0 ) e. ( Base ` K ) /\ ( X ` 0 ) =/= .0. ) -> ( I ` ( X ` 0 ) ) e. ( Base ` K ) ) | 
						
							| 37 | 8 34 35 36 | syl2an3an |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( I ` ( X ` 0 ) ) e. ( Base ` K ) ) | 
						
							| 38 | 29 | adantr |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> X e. ( Base ` W ) ) | 
						
							| 39 | 33 | adantr |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> 0 e. ( 0 ... N ) ) | 
						
							| 40 |  | eqid |  |-  ( .r ` K ) = ( .r ` K ) | 
						
							| 41 | 3 24 25 26 37 38 39 4 40 | frlmvscaval |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) = ( ( I ` ( X ` 0 ) ) ( .r ` K ) ( X ` 0 ) ) ) | 
						
							| 42 | 25 5 40 6 7 | drnginvrl |  |-  ( ( K e. DivRing /\ ( X ` 0 ) e. ( Base ` K ) /\ ( X ` 0 ) =/= .0. ) -> ( ( I ` ( X ` 0 ) ) ( .r ` K ) ( X ` 0 ) ) = .1. ) | 
						
							| 43 | 8 34 35 42 | syl2an3an |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( ( I ` ( X ` 0 ) ) ( .r ` K ) ( X ` 0 ) ) = .1. ) | 
						
							| 44 | 41 43 | eqtrd |  |-  ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) = .1. ) | 
						
							| 45 | 23 44 | ifeq12da |  |-  ( ph -> if ( ( X ` 0 ) = .0. , ( X ` 0 ) , ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) ) = if ( ( X ` 0 ) = .0. , .0. , .1. ) ) | 
						
							| 46 | 20 22 45 | 3eqtrd |  |-  ( ph -> ( ( F ` X ) ` 0 ) = if ( ( X ` 0 ) = .0. , .0. , .1. ) ) |