Step |
Hyp |
Ref |
Expression |
1 |
|
prjspnfv01.f |
|- F = ( b e. B |-> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) ) |
2 |
|
prjspnfv01.b |
|- B = ( ( Base ` W ) \ { ( 0g ` W ) } ) |
3 |
|
prjspnfv01.w |
|- W = ( K freeLMod ( 0 ... N ) ) |
4 |
|
prjspnfv01.t |
|- .x. = ( .s ` W ) |
5 |
|
prjspnfv01.0 |
|- .0. = ( 0g ` K ) |
6 |
|
prjspnfv01.1 |
|- .1. = ( 1r ` K ) |
7 |
|
prjspnfv01.i |
|- I = ( invr ` K ) |
8 |
|
prjspnfv01.k |
|- ( ph -> K e. DivRing ) |
9 |
|
prjspnfv01.n |
|- ( ph -> N e. NN0 ) |
10 |
|
prjspnfv01.x |
|- ( ph -> X e. B ) |
11 |
|
fveq1 |
|- ( b = X -> ( b ` 0 ) = ( X ` 0 ) ) |
12 |
11
|
eqeq1d |
|- ( b = X -> ( ( b ` 0 ) = .0. <-> ( X ` 0 ) = .0. ) ) |
13 |
|
id |
|- ( b = X -> b = X ) |
14 |
11
|
fveq2d |
|- ( b = X -> ( I ` ( b ` 0 ) ) = ( I ` ( X ` 0 ) ) ) |
15 |
14 13
|
oveq12d |
|- ( b = X -> ( ( I ` ( b ` 0 ) ) .x. b ) = ( ( I ` ( X ` 0 ) ) .x. X ) ) |
16 |
12 13 15
|
ifbieq12d |
|- ( b = X -> if ( ( b ` 0 ) = .0. , b , ( ( I ` ( b ` 0 ) ) .x. b ) ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) |
17 |
|
ovexd |
|- ( ph -> ( ( I ` ( X ` 0 ) ) .x. X ) e. _V ) |
18 |
10 17
|
ifexd |
|- ( ph -> if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) e. _V ) |
19 |
1 16 10 18
|
fvmptd3 |
|- ( ph -> ( F ` X ) = if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ) |
20 |
19
|
fveq1d |
|- ( ph -> ( ( F ` X ) ` 0 ) = ( if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ` 0 ) ) |
21 |
|
iffv |
|- ( if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ` 0 ) = if ( ( X ` 0 ) = .0. , ( X ` 0 ) , ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) ) |
22 |
21
|
a1i |
|- ( ph -> ( if ( ( X ` 0 ) = .0. , X , ( ( I ` ( X ` 0 ) ) .x. X ) ) ` 0 ) = if ( ( X ` 0 ) = .0. , ( X ` 0 ) , ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) ) ) |
23 |
|
simpr |
|- ( ( ph /\ ( X ` 0 ) = .0. ) -> ( X ` 0 ) = .0. ) |
24 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
25 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
26 |
|
ovexd |
|- ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( 0 ... N ) e. _V ) |
27 |
|
ovexd |
|- ( ph -> ( 0 ... N ) e. _V ) |
28 |
10 2
|
eleqtrdi |
|- ( ph -> X e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) |
29 |
28
|
eldifad |
|- ( ph -> X e. ( Base ` W ) ) |
30 |
3 25 24
|
frlmbasf |
|- ( ( ( 0 ... N ) e. _V /\ X e. ( Base ` W ) ) -> X : ( 0 ... N ) --> ( Base ` K ) ) |
31 |
27 29 30
|
syl2anc |
|- ( ph -> X : ( 0 ... N ) --> ( Base ` K ) ) |
32 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
33 |
9 32
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
34 |
31 33
|
ffvelrnd |
|- ( ph -> ( X ` 0 ) e. ( Base ` K ) ) |
35 |
|
neqne |
|- ( -. ( X ` 0 ) = .0. -> ( X ` 0 ) =/= .0. ) |
36 |
25 5 7
|
drnginvrcl |
|- ( ( K e. DivRing /\ ( X ` 0 ) e. ( Base ` K ) /\ ( X ` 0 ) =/= .0. ) -> ( I ` ( X ` 0 ) ) e. ( Base ` K ) ) |
37 |
8 34 35 36
|
syl2an3an |
|- ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( I ` ( X ` 0 ) ) e. ( Base ` K ) ) |
38 |
29
|
adantr |
|- ( ( ph /\ -. ( X ` 0 ) = .0. ) -> X e. ( Base ` W ) ) |
39 |
33
|
adantr |
|- ( ( ph /\ -. ( X ` 0 ) = .0. ) -> 0 e. ( 0 ... N ) ) |
40 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
41 |
3 24 25 26 37 38 39 4 40
|
frlmvscaval |
|- ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) = ( ( I ` ( X ` 0 ) ) ( .r ` K ) ( X ` 0 ) ) ) |
42 |
25 5 40 6 7
|
drnginvrl |
|- ( ( K e. DivRing /\ ( X ` 0 ) e. ( Base ` K ) /\ ( X ` 0 ) =/= .0. ) -> ( ( I ` ( X ` 0 ) ) ( .r ` K ) ( X ` 0 ) ) = .1. ) |
43 |
8 34 35 42
|
syl2an3an |
|- ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( ( I ` ( X ` 0 ) ) ( .r ` K ) ( X ` 0 ) ) = .1. ) |
44 |
41 43
|
eqtrd |
|- ( ( ph /\ -. ( X ` 0 ) = .0. ) -> ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) = .1. ) |
45 |
23 44
|
ifeq12da |
|- ( ph -> if ( ( X ` 0 ) = .0. , ( X ` 0 ) , ( ( ( I ` ( X ` 0 ) ) .x. X ) ` 0 ) ) = if ( ( X ` 0 ) = .0. , .0. , .1. ) ) |
46 |
20 22 45
|
3eqtrd |
|- ( ph -> ( ( F ` X ) ` 0 ) = if ( ( X ` 0 ) = .0. , .0. , .1. ) ) |