Step |
Hyp |
Ref |
Expression |
1 |
|
prjspnfv01.f |
⊢ 𝐹 = ( 𝑏 ∈ 𝐵 ↦ if ( ( 𝑏 ‘ 0 ) = 0 , 𝑏 , ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) ) ) |
2 |
|
prjspnfv01.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
3 |
|
prjspnfv01.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) |
4 |
|
prjspnfv01.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
prjspnfv01.0 |
⊢ 0 = ( 0g ‘ 𝐾 ) |
6 |
|
prjspnfv01.1 |
⊢ 1 = ( 1r ‘ 𝐾 ) |
7 |
|
prjspnfv01.i |
⊢ 𝐼 = ( invr ‘ 𝐾 ) |
8 |
|
prjspnfv01.k |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
9 |
|
prjspnfv01.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
10 |
|
prjspnfv01.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
11 |
|
fveq1 |
⊢ ( 𝑏 = 𝑋 → ( 𝑏 ‘ 0 ) = ( 𝑋 ‘ 0 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝑏 ‘ 0 ) = 0 ↔ ( 𝑋 ‘ 0 ) = 0 ) ) |
13 |
|
id |
⊢ ( 𝑏 = 𝑋 → 𝑏 = 𝑋 ) |
14 |
11
|
fveq2d |
⊢ ( 𝑏 = 𝑋 → ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ) |
15 |
14 13
|
oveq12d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) = ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) |
16 |
12 13 15
|
ifbieq12d |
⊢ ( 𝑏 = 𝑋 → if ( ( 𝑏 ‘ 0 ) = 0 , 𝑏 , ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) ) · 𝑏 ) ) = if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
17 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ∈ V ) |
18 |
10 17
|
ifexd |
⊢ ( 𝜑 → if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ∈ V ) |
19 |
1 16 10 18
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ) |
20 |
19
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ‘ 0 ) = ( if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ‘ 0 ) ) |
21 |
|
iffv |
⊢ ( if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ‘ 0 ) = if ( ( 𝑋 ‘ 0 ) = 0 , ( 𝑋 ‘ 0 ) , ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ‘ 0 ) ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( if ( ( 𝑋 ‘ 0 ) = 0 , 𝑋 , ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ) ‘ 0 ) = if ( ( 𝑋 ‘ 0 ) = 0 , ( 𝑋 ‘ 0 ) , ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ‘ 0 ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 0 ) = 0 ) → ( 𝑋 ‘ 0 ) = 0 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
26 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( 0 ... 𝑁 ) ∈ V ) |
27 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ V ) |
28 |
10 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
29 |
28
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
30 |
3 25 24
|
frlmbasf |
⊢ ( ( ( 0 ... 𝑁 ) ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → 𝑋 : ( 0 ... 𝑁 ) ⟶ ( Base ‘ 𝐾 ) ) |
31 |
27 29 30
|
syl2anc |
⊢ ( 𝜑 → 𝑋 : ( 0 ... 𝑁 ) ⟶ ( Base ‘ 𝐾 ) ) |
32 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
33 |
9 32
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
34 |
31 33
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑋 ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
|
neqne |
⊢ ( ¬ ( 𝑋 ‘ 0 ) = 0 → ( 𝑋 ‘ 0 ) ≠ 0 ) |
36 |
25 5 7
|
drnginvrcl |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑋 ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑋 ‘ 0 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ∈ ( Base ‘ 𝐾 ) ) |
37 |
8 34 35 36
|
syl2an3an |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
39 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
40 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
41 |
3 24 25 26 37 38 39 4 40
|
frlmvscaval |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ‘ 0 ) = ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝑋 ‘ 0 ) ) ) |
42 |
25 5 40 6 7
|
drnginvrl |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑋 ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑋 ‘ 0 ) ≠ 0 ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝑋 ‘ 0 ) ) = 1 ) |
43 |
8 34 35 42
|
syl2an3an |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝑋 ‘ 0 ) ) = 1 ) |
44 |
41 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 ‘ 0 ) = 0 ) → ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ‘ 0 ) = 1 ) |
45 |
23 44
|
ifeq12da |
⊢ ( 𝜑 → if ( ( 𝑋 ‘ 0 ) = 0 , ( 𝑋 ‘ 0 ) , ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) · 𝑋 ) ‘ 0 ) ) = if ( ( 𝑋 ‘ 0 ) = 0 , 0 , 1 ) ) |
46 |
20 22 45
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ‘ 0 ) = if ( ( 𝑋 ‘ 0 ) = 0 , 0 , 1 ) ) |