| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspnfv01.f | ⊢ 𝐹  =  ( 𝑏  ∈  𝐵  ↦  if ( ( 𝑏 ‘ 0 )  =   0  ,  𝑏 ,  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 ) ) ) | 
						
							| 2 |  | prjspnfv01.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 3 |  | prjspnfv01.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 𝑁 ) ) | 
						
							| 4 |  | prjspnfv01.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | prjspnfv01.0 | ⊢  0   =  ( 0g ‘ 𝐾 ) | 
						
							| 6 |  | prjspnfv01.1 | ⊢  1   =  ( 1r ‘ 𝐾 ) | 
						
							| 7 |  | prjspnfv01.i | ⊢ 𝐼  =  ( invr ‘ 𝐾 ) | 
						
							| 8 |  | prjspnfv01.k | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 9 |  | prjspnfv01.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 |  | prjspnfv01.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑏  =  𝑋  →  ( 𝑏 ‘ 0 )  =  ( 𝑋 ‘ 0 ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑏  =  𝑋  →  ( ( 𝑏 ‘ 0 )  =   0   ↔  ( 𝑋 ‘ 0 )  =   0  ) ) | 
						
							| 13 |  | id | ⊢ ( 𝑏  =  𝑋  →  𝑏  =  𝑋 ) | 
						
							| 14 | 11 | fveq2d | ⊢ ( 𝑏  =  𝑋  →  ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  =  ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ) | 
						
							| 15 | 14 13 | oveq12d | ⊢ ( 𝑏  =  𝑋  →  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 )  =  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) | 
						
							| 16 | 12 13 15 | ifbieq12d | ⊢ ( 𝑏  =  𝑋  →  if ( ( 𝑏 ‘ 0 )  =   0  ,  𝑏 ,  ( ( 𝐼 ‘ ( 𝑏 ‘ 0 ) )  ·  𝑏 ) )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) ) | 
						
							| 17 |  | ovexd | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 )  ∈  V ) | 
						
							| 18 | 10 17 | ifexd | ⊢ ( 𝜑  →  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) )  ∈  V ) | 
						
							| 19 | 1 16 10 18 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) ) | 
						
							| 20 | 19 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) ‘ 0 )  =  ( if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) ‘ 0 ) ) | 
						
							| 21 |  | iffv | ⊢ ( if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) ‘ 0 )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,  ( 𝑋 ‘ 0 ) ,  ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ‘ 0 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ( if ( ( 𝑋 ‘ 0 )  =   0  ,  𝑋 ,  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ) ‘ 0 )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,  ( 𝑋 ‘ 0 ) ,  ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ‘ 0 ) ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ 0 )  =   0  )  →  ( 𝑋 ‘ 0 )  =   0  ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 26 |  | ovexd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 ‘ 0 )  =   0  )  →  ( 0 ... 𝑁 )  ∈  V ) | 
						
							| 27 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ∈  V ) | 
						
							| 28 | 10 2 | eleqtrdi | ⊢ ( 𝜑  →  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 29 | 28 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 30 | 3 25 24 | frlmbasf | ⊢ ( ( ( 0 ... 𝑁 )  ∈  V  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  𝑋 : ( 0 ... 𝑁 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 31 | 27 29 30 | syl2anc | ⊢ ( 𝜑  →  𝑋 : ( 0 ... 𝑁 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 32 |  | 0elfz | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 33 | 9 32 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 34 | 31 33 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑋 ‘ 0 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 35 |  | neqne | ⊢ ( ¬  ( 𝑋 ‘ 0 )  =   0   →  ( 𝑋 ‘ 0 )  ≠   0  ) | 
						
							| 36 | 25 5 7 | drnginvrcl | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 𝑋 ‘ 0 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑋 ‘ 0 )  ≠   0  )  →  ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 37 | 8 34 35 36 | syl2an3an | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 ‘ 0 )  =   0  )  →  ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 38 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 ‘ 0 )  =   0  )  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 39 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 ‘ 0 )  =   0  )  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 40 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 41 | 3 24 25 26 37 38 39 4 40 | frlmvscaval | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 ‘ 0 )  =   0  )  →  ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ‘ 0 )  =  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝑋 ‘ 0 ) ) ) | 
						
							| 42 | 25 5 40 6 7 | drnginvrl | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 𝑋 ‘ 0 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑋 ‘ 0 )  ≠   0  )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝑋 ‘ 0 ) )  =   1  ) | 
						
							| 43 | 8 34 35 42 | syl2an3an | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 ‘ 0 )  =   0  )  →  ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) ) ( .r ‘ 𝐾 ) ( 𝑋 ‘ 0 ) )  =   1  ) | 
						
							| 44 | 41 43 | eqtrd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 ‘ 0 )  =   0  )  →  ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ‘ 0 )  =   1  ) | 
						
							| 45 | 23 44 | ifeq12da | ⊢ ( 𝜑  →  if ( ( 𝑋 ‘ 0 )  =   0  ,  ( 𝑋 ‘ 0 ) ,  ( ( ( 𝐼 ‘ ( 𝑋 ‘ 0 ) )  ·  𝑋 ) ‘ 0 ) )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,   0  ,   1  ) ) | 
						
							| 46 | 20 22 45 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) ‘ 0 )  =  if ( ( 𝑋 ‘ 0 )  =   0  ,   0  ,   1  ) ) |