Metamath Proof Explorer
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
ersym.1 |
|- ( ph -> R Er X ) |
|
|
ersym.2 |
|- ( ph -> A R B ) |
|
Assertion |
ercl2 |
|- ( ph -> B e. X ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ersym.1 |
|- ( ph -> R Er X ) |
| 2 |
|
ersym.2 |
|- ( ph -> A R B ) |
| 3 |
1 2
|
ersym |
|- ( ph -> B R A ) |
| 4 |
1 3
|
ercl |
|- ( ph -> B e. X ) |