| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0prjspnrel.e |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝑆 𝑥 = ( 𝑙 · 𝑦 ) ) } |
| 2 |
|
0prjspnrel.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
| 3 |
|
0prjspnrel.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
0prjspnrel.s |
⊢ 𝑆 = ( Base ‘ 𝐾 ) |
| 5 |
|
0prjspnrel.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 0 ) ) |
| 6 |
|
0prjspnrel.1 |
⊢ 1 = ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) |
| 7 |
|
simpr |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 8 |
2 5 6
|
0prjspnlem |
⊢ ( 𝐾 ∈ DivRing → 1 ∈ 𝐵 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 10 |
|
sneq |
⊢ ( 𝑛 = ( 𝑋 ‘ 0 ) → { 𝑛 } = { ( 𝑋 ‘ 0 ) } ) |
| 11 |
10
|
xpeq2d |
⊢ ( 𝑛 = ( 𝑋 ‘ 0 ) → ( ( 0 ... 0 ) × { 𝑛 } ) = ( ( 0 ... 0 ) × { ( 𝑋 ‘ 0 ) } ) ) |
| 12 |
11
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑋 ‘ 0 ) → ( 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) ↔ 𝑋 = ( ( 0 ... 0 ) × { ( 𝑋 ‘ 0 ) } ) ) ) |
| 13 |
|
ovexd |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → ( 0 ... 0 ) ∈ V ) |
| 14 |
|
difss |
⊢ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ⊆ ( Base ‘ 𝑊 ) |
| 15 |
2 14
|
eqsstri |
⊢ 𝐵 ⊆ ( Base ‘ 𝑊 ) |
| 16 |
15
|
sseli |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 20 |
5 18 19
|
frlmbasf |
⊢ ( ( ( 0 ... 0 ) ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → 𝑋 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 21 |
13 17 20
|
syl2anc |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 22 |
|
c0ex |
⊢ 0 ∈ V |
| 23 |
22
|
snid |
⊢ 0 ∈ { 0 } |
| 24 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
| 25 |
23 24
|
eleqtrri |
⊢ 0 ∈ ( 0 ... 0 ) |
| 26 |
25
|
a1i |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ ( 0 ... 0 ) ) |
| 27 |
21 26
|
ffvelcdmd |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
5 18 19
|
frlmbasmap |
⊢ ( ( ( 0 ... 0 ) ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → 𝑋 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 0 ) ) ) |
| 29 |
13 17 28
|
syl2anc |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 0 ) ) ) |
| 30 |
|
fvex |
⊢ ( Base ‘ 𝐾 ) ∈ V |
| 31 |
24 30 22
|
mapsnconst |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 0 ) ) → 𝑋 = ( ( 0 ... 0 ) × { ( 𝑋 ‘ 0 ) } ) ) |
| 32 |
29 31
|
syl |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( ( 0 ... 0 ) × { ( 𝑋 ‘ 0 ) } ) ) |
| 33 |
12 27 32
|
rspcedvdw |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑛 ∈ ( Base ‘ 𝐾 ) 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) ) |
| 34 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 1 ) = ( 𝑛 · 1 ) ) |
| 35 |
34
|
eqeq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑋 = ( 𝑚 · 1 ) ↔ 𝑋 = ( 𝑛 · 1 ) ) ) |
| 36 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑛 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) ) ) → 𝑛 ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
36 4
|
eleqtrrdi |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑛 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) ) ) → 𝑛 ∈ 𝑆 ) |
| 38 |
|
ovexd |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 0 ... 0 ) ∈ V ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → 𝑛 ∈ ( Base ‘ 𝐾 ) ) |
| 40 |
8
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → 1 ∈ 𝐵 ) |
| 41 |
15 40
|
sselid |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → 1 ∈ ( Base ‘ 𝑊 ) ) |
| 42 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 43 |
5 19 18 38 39 41 3 42
|
frlmvscafval |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑛 · 1 ) = ( ( ( 0 ... 0 ) × { 𝑛 } ) ∘f ( .r ‘ 𝐾 ) 1 ) ) |
| 44 |
5 18 19
|
frlmbasf |
⊢ ( ( ( 0 ... 0 ) ∈ V ∧ 1 ∈ ( Base ‘ 𝑊 ) ) → 1 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 45 |
38 41 44
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → 1 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 46 |
|
drngring |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ Ring ) |
| 47 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
| 48 |
18 47
|
ringidcl |
⊢ ( 𝐾 ∈ Ring → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 49 |
46 48
|
syl |
⊢ ( 𝐾 ∈ DivRing → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 51 |
50
|
snssd |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → { ( 1r ‘ 𝐾 ) } ⊆ ( Base ‘ 𝐾 ) ) |
| 52 |
6
|
a1i |
⊢ ( 𝑑 ∈ ( 0 ... 0 ) → 1 = ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ) |
| 53 |
|
elfz1eq |
⊢ ( 𝑑 ∈ ( 0 ... 0 ) → 𝑑 = 0 ) |
| 54 |
52 53
|
fveq12d |
⊢ ( 𝑑 ∈ ( 0 ... 0 ) → ( 1 ‘ 𝑑 ) = ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑑 ∈ ( 0 ... 0 ) ) → ( 1 ‘ 𝑑 ) = ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) ) |
| 56 |
|
eqid |
⊢ ( 𝐾 unitVec ( 0 ... 0 ) ) = ( 𝐾 unitVec ( 0 ... 0 ) ) |
| 57 |
|
simplll |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑑 ∈ ( 0 ... 0 ) ) → 𝐾 ∈ DivRing ) |
| 58 |
|
ovexd |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑑 ∈ ( 0 ... 0 ) ) → ( 0 ... 0 ) ∈ V ) |
| 59 |
25
|
a1i |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑑 ∈ ( 0 ... 0 ) ) → 0 ∈ ( 0 ... 0 ) ) |
| 60 |
56 57 58 59 47
|
uvcvv1 |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑑 ∈ ( 0 ... 0 ) ) → ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) = ( 1r ‘ 𝐾 ) ) |
| 61 |
|
fvex |
⊢ ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) ∈ V |
| 62 |
61
|
elsn |
⊢ ( ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) ∈ { ( 1r ‘ 𝐾 ) } ↔ ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) = ( 1r ‘ 𝐾 ) ) |
| 63 |
60 62
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑑 ∈ ( 0 ... 0 ) ) → ( ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) ∈ { ( 1r ‘ 𝐾 ) } ) |
| 64 |
55 63
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑑 ∈ ( 0 ... 0 ) ) → ( 1 ‘ 𝑑 ) ∈ { ( 1r ‘ 𝐾 ) } ) |
| 65 |
64
|
ralrimiva |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ∀ 𝑑 ∈ ( 0 ... 0 ) ( 1 ‘ 𝑑 ) ∈ { ( 1r ‘ 𝐾 ) } ) |
| 66 |
|
fcdmssb |
⊢ ( ( { ( 1r ‘ 𝐾 ) } ⊆ ( Base ‘ 𝐾 ) ∧ ∀ 𝑑 ∈ ( 0 ... 0 ) ( 1 ‘ 𝑑 ) ∈ { ( 1r ‘ 𝐾 ) } ) → ( 1 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ↔ 1 : ( 0 ... 0 ) ⟶ { ( 1r ‘ 𝐾 ) } ) ) |
| 67 |
51 65 66
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 1 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ↔ 1 : ( 0 ... 0 ) ⟶ { ( 1r ‘ 𝐾 ) } ) ) |
| 68 |
45 67
|
mpbid |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → 1 : ( 0 ... 0 ) ⟶ { ( 1r ‘ 𝐾 ) } ) |
| 69 |
|
vex |
⊢ 𝑛 ∈ V |
| 70 |
69
|
a1i |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → 𝑛 ∈ V ) |
| 71 |
|
elsni |
⊢ ( 𝑐 ∈ { ( 1r ‘ 𝐾 ) } → 𝑐 = ( 1r ‘ 𝐾 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝑐 ∈ { ( 1r ‘ 𝐾 ) } → ( 𝑛 ( .r ‘ 𝐾 ) 𝑐 ) = ( 𝑛 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) |
| 73 |
46
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → 𝐾 ∈ Ring ) |
| 74 |
18 42 47 73 39
|
ringridmd |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑛 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = 𝑛 ) |
| 75 |
72 74
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑐 ∈ { ( 1r ‘ 𝐾 ) } ) → ( 𝑛 ( .r ‘ 𝐾 ) 𝑐 ) = 𝑛 ) |
| 76 |
38 68 70 70 75
|
caofid2 |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 0 ... 0 ) × { 𝑛 } ) ∘f ( .r ‘ 𝐾 ) 1 ) = ( ( 0 ... 0 ) × { 𝑛 } ) ) |
| 77 |
43 76
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑛 · 1 ) = ( ( 0 ... 0 ) × { 𝑛 } ) ) |
| 78 |
77
|
eqeq2d |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 = ( 𝑛 · 1 ) ↔ 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) ) ) |
| 79 |
78
|
biimprd |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) → 𝑋 = ( 𝑛 · 1 ) ) ) |
| 80 |
79
|
impr |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑛 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) ) ) → 𝑋 = ( 𝑛 · 1 ) ) |
| 81 |
35 37 80
|
rspcedvdw |
⊢ ( ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑛 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 = ( ( 0 ... 0 ) × { 𝑛 } ) ) ) → ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 1 ) ) |
| 82 |
33 81
|
rexlimddv |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 1 ) ) |
| 83 |
1
|
prjsprel |
⊢ ( 𝑋 ∼ 1 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝑆 𝑋 = ( 𝑚 · 1 ) ) ) |
| 84 |
7 9 82 83
|
syl21anbrc |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∼ 1 ) |