| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0prjspnrel.e | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝑆 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | 0prjspnrel.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 3 |  | 0prjspnrel.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | 0prjspnrel.s | ⊢ 𝑆  =  ( Base ‘ 𝐾 ) | 
						
							| 5 |  | 0prjspnrel.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 0 ) ) | 
						
							| 6 |  | 0prjspnrel.1 | ⊢  1   =  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 8 | 2 5 6 | 0prjspnlem | ⊢ ( 𝐾  ∈  DivRing  →   1   ∈  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →   1   ∈  𝐵 ) | 
						
							| 10 |  | sneq | ⊢ ( 𝑛  =  ( 𝑋 ‘ 0 )  →  { 𝑛 }  =  { ( 𝑋 ‘ 0 ) } ) | 
						
							| 11 | 10 | xpeq2d | ⊢ ( 𝑛  =  ( 𝑋 ‘ 0 )  →  ( ( 0 ... 0 )  ×  { 𝑛 } )  =  ( ( 0 ... 0 )  ×  { ( 𝑋 ‘ 0 ) } ) ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑛  =  ( 𝑋 ‘ 0 )  →  ( 𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } )  ↔  𝑋  =  ( ( 0 ... 0 )  ×  { ( 𝑋 ‘ 0 ) } ) ) ) | 
						
							| 13 |  | ovexd | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  ( 0 ... 0 )  ∈  V ) | 
						
							| 14 |  | difss | ⊢ ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 15 | 2 14 | eqsstri | ⊢ 𝐵  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 16 | 15 | sseli | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 20 | 5 18 19 | frlmbasf | ⊢ ( ( ( 0 ... 0 )  ∈  V  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  𝑋 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 21 | 13 17 20 | syl2anc | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  𝑋 : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 22 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 23 | 22 | snid | ⊢ 0  ∈  { 0 } | 
						
							| 24 |  | fz0sn | ⊢ ( 0 ... 0 )  =  { 0 } | 
						
							| 25 | 23 24 | eleqtrri | ⊢ 0  ∈  ( 0 ... 0 ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  0  ∈  ( 0 ... 0 ) ) | 
						
							| 27 | 21 26 | ffvelcdmd | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 ‘ 0 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 28 | 5 18 19 | frlmbasmap | ⊢ ( ( ( 0 ... 0 )  ∈  V  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  𝑋  ∈  ( ( Base ‘ 𝐾 )  ↑m  ( 0 ... 0 ) ) ) | 
						
							| 29 | 13 17 28 | syl2anc | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  ( ( Base ‘ 𝐾 )  ↑m  ( 0 ... 0 ) ) ) | 
						
							| 30 |  | fvex | ⊢ ( Base ‘ 𝐾 )  ∈  V | 
						
							| 31 | 24 30 22 | mapsnconst | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝐾 )  ↑m  ( 0 ... 0 ) )  →  𝑋  =  ( ( 0 ... 0 )  ×  { ( 𝑋 ‘ 0 ) } ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  𝑋  =  ( ( 0 ... 0 )  ×  { ( 𝑋 ‘ 0 ) } ) ) | 
						
							| 33 | 12 27 32 | rspcedvdw | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑛  ∈  ( Base ‘ 𝐾 ) 𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) | 
						
							| 34 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ·   1  )  =  ( 𝑛  ·   1  ) ) | 
						
							| 35 | 34 | eqeq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑋  =  ( 𝑚  ·   1  )  ↔  𝑋  =  ( 𝑛  ·   1  ) ) ) | 
						
							| 36 |  | simprl | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑛  ∈  ( Base ‘ 𝐾 )  ∧  𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) )  →  𝑛  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 37 | 36 4 | eleqtrrdi | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑛  ∈  ( Base ‘ 𝐾 )  ∧  𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) )  →  𝑛  ∈  𝑆 ) | 
						
							| 38 |  | ovexd | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( 0 ... 0 )  ∈  V ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  𝑛  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 40 | 8 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →   1   ∈  𝐵 ) | 
						
							| 41 | 15 40 | sselid | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →   1   ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 42 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 43 | 5 19 18 38 39 41 3 42 | frlmvscafval | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑛  ·   1  )  =  ( ( ( 0 ... 0 )  ×  { 𝑛 } )  ∘f  ( .r ‘ 𝐾 )  1  ) ) | 
						
							| 44 | 5 18 19 | frlmbasf | ⊢ ( ( ( 0 ... 0 )  ∈  V  ∧   1   ∈  ( Base ‘ 𝑊 ) )  →   1  : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 45 | 38 41 44 | syl2anc | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →   1  : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 46 |  | drngring | ⊢ ( 𝐾  ∈  DivRing  →  𝐾  ∈  Ring ) | 
						
							| 47 |  | eqid | ⊢ ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐾 ) | 
						
							| 48 | 18 47 | ringidcl | ⊢ ( 𝐾  ∈  Ring  →  ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 49 | 46 48 | syl | ⊢ ( 𝐾  ∈  DivRing  →  ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 50 | 49 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 51 | 50 | snssd | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  { ( 1r ‘ 𝐾 ) }  ⊆  ( Base ‘ 𝐾 ) ) | 
						
							| 52 | 6 | a1i | ⊢ ( 𝑑  ∈  ( 0 ... 0 )  →   1   =  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ) | 
						
							| 53 |  | elfz1eq | ⊢ ( 𝑑  ∈  ( 0 ... 0 )  →  𝑑  =  0 ) | 
						
							| 54 | 52 53 | fveq12d | ⊢ ( 𝑑  ∈  ( 0 ... 0 )  →  (  1  ‘ 𝑑 )  =  ( ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑑  ∈  ( 0 ... 0 ) )  →  (  1  ‘ 𝑑 )  =  ( ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 ) ) | 
						
							| 56 |  | eqid | ⊢ ( 𝐾  unitVec  ( 0 ... 0 ) )  =  ( 𝐾  unitVec  ( 0 ... 0 ) ) | 
						
							| 57 |  | simplll | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑑  ∈  ( 0 ... 0 ) )  →  𝐾  ∈  DivRing ) | 
						
							| 58 |  | ovexd | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑑  ∈  ( 0 ... 0 ) )  →  ( 0 ... 0 )  ∈  V ) | 
						
							| 59 | 25 | a1i | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑑  ∈  ( 0 ... 0 ) )  →  0  ∈  ( 0 ... 0 ) ) | 
						
							| 60 | 56 57 58 59 47 | uvcvv1 | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑑  ∈  ( 0 ... 0 ) )  →  ( ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 61 |  | fvex | ⊢ ( ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 )  ∈  V | 
						
							| 62 | 61 | elsn | ⊢ ( ( ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 )  ∈  { ( 1r ‘ 𝐾 ) }  ↔  ( ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 63 | 60 62 | sylibr | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑑  ∈  ( 0 ... 0 ) )  →  ( ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ‘ 0 )  ∈  { ( 1r ‘ 𝐾 ) } ) | 
						
							| 64 | 55 63 | eqeltrd | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑑  ∈  ( 0 ... 0 ) )  →  (  1  ‘ 𝑑 )  ∈  { ( 1r ‘ 𝐾 ) } ) | 
						
							| 65 | 64 | ralrimiva | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ∀ 𝑑  ∈  ( 0 ... 0 ) (  1  ‘ 𝑑 )  ∈  { ( 1r ‘ 𝐾 ) } ) | 
						
							| 66 |  | fcdmssb | ⊢ ( ( { ( 1r ‘ 𝐾 ) }  ⊆  ( Base ‘ 𝐾 )  ∧  ∀ 𝑑  ∈  ( 0 ... 0 ) (  1  ‘ 𝑑 )  ∈  { ( 1r ‘ 𝐾 ) } )  →  (  1  : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 )  ↔   1  : ( 0 ... 0 ) ⟶ { ( 1r ‘ 𝐾 ) } ) ) | 
						
							| 67 | 51 65 66 | syl2anc | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  (  1  : ( 0 ... 0 ) ⟶ ( Base ‘ 𝐾 )  ↔   1  : ( 0 ... 0 ) ⟶ { ( 1r ‘ 𝐾 ) } ) ) | 
						
							| 68 | 45 67 | mpbid | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →   1  : ( 0 ... 0 ) ⟶ { ( 1r ‘ 𝐾 ) } ) | 
						
							| 69 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 70 | 69 | a1i | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  𝑛  ∈  V ) | 
						
							| 71 |  | elsni | ⊢ ( 𝑐  ∈  { ( 1r ‘ 𝐾 ) }  →  𝑐  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( 𝑐  ∈  { ( 1r ‘ 𝐾 ) }  →  ( 𝑛 ( .r ‘ 𝐾 ) 𝑐 )  =  ( 𝑛 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) | 
						
							| 73 | 46 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  𝐾  ∈  Ring ) | 
						
							| 74 | 18 42 47 73 39 | ringridmd | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑛 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) )  =  𝑛 ) | 
						
							| 75 | 72 74 | sylan9eqr | ⊢ ( ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑐  ∈  { ( 1r ‘ 𝐾 ) } )  →  ( 𝑛 ( .r ‘ 𝐾 ) 𝑐 )  =  𝑛 ) | 
						
							| 76 | 38 68 70 70 75 | caofid2 | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( 0 ... 0 )  ×  { 𝑛 } )  ∘f  ( .r ‘ 𝐾 )  1  )  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) | 
						
							| 77 | 43 76 | eqtrd | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑛  ·   1  )  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) | 
						
							| 78 | 77 | eqeq2d | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑋  =  ( 𝑛  ·   1  )  ↔  𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) ) | 
						
							| 79 | 78 | biimprd | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } )  →  𝑋  =  ( 𝑛  ·   1  ) ) ) | 
						
							| 80 | 79 | impr | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑛  ∈  ( Base ‘ 𝐾 )  ∧  𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) )  →  𝑋  =  ( 𝑛  ·   1  ) ) | 
						
							| 81 | 35 37 80 | rspcedvdw | ⊢ ( ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑛  ∈  ( Base ‘ 𝐾 )  ∧  𝑋  =  ( ( 0 ... 0 )  ×  { 𝑛 } ) ) )  →  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·   1  ) ) | 
						
							| 82 | 33 81 | rexlimddv | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·   1  ) ) | 
						
							| 83 | 1 | prjsprel | ⊢ ( 𝑋  ∼   1   ↔  ( ( 𝑋  ∈  𝐵  ∧   1   ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝑆 𝑋  =  ( 𝑚  ·   1  ) ) ) | 
						
							| 84 | 7 9 82 83 | syl21anbrc | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∼   1  ) |